forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCollaborative Filtering
56 lines (46 loc) · 1.34 KB
/
Collaborative Filtering
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
Data available at https://drive.google.com/drive/folders/0B0RLknmL54khU2UwX3dnX1E1WHc?usp=sharing
Movie1 Movie2 Movie 3 Genre
[[ 3., 4., 4., 3.],
[ 2., 3., 3., 3.],
[ 4., 5., 5., 3.],
[ 1., 2., 2., 3.],
[ 4., 5., nan, 3.],
[ 4., 5., 5., 3.],
[ 2., 3., 3., 4.],
[ 0., 1., 1., 4.],
[ 0., 1., 1., 4.],
[ 0., 1., 1., 4.],
[ 4., 5., 5., 4.],
[ 1., 2., 2., 4.],
[ 4., 3., 3., 5.],
[ 4., 3., 3., 5.],
[ 2., 1., 1., 5.],
[ 3., 2., 2., 5.],
[ 3., 2., 2., 5.],
[ 2., 1., 1., 5.],
[ 5., 4., 4., 5.]]
import pandas as pd
import numpy as np
aa=pd.read_csv('Collab.Filtering.Data.csv',sep=',',header=0)
missing_value=5
d=[]
for i in range(0,aa.shape[1]):
d.append(pd.isnull(aa[[i]]).any(1).nonzero()[0])
column=np.where(np.array(d)>0)[0][0]
row=d[column][0]
subset=aa[:row+1]
minim=min(np.where(aa[[3]]==3)[0])
maxim=max(np.where(aa[[3]]==3)[0])+1
b=aa.fillna(0)
col=np.array(b[[2]][minim:maxim]).T
row_=np.array(b)
selected_rows=row_[minim:maxim]
row_calculation=row_[row]
ab=[]
for i in range(0,6):
x=(col[0][i]-np.mean(selected_rows[i][0:3]))
y=(col[0][i]-np.mean(col[0]))
ab.append(x*y/np.sqrt(x**2*y**2))
ab
predicted_value=np.mean(row_calculation)+np.sum(ab)
print('Accuracy:',missing_value/predicted_value)