-
Notifications
You must be signed in to change notification settings - Fork 13
/
作业6.html
291 lines (265 loc) · 225 KB
/
作业6.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
<!DOCTYPE html> <html lang=en xml:lang=en xmlns=http://www.w3.org/1999/xhtml style><!--
Page saved with SingleFile
url: http://abc.sysu.work/Homework/hwDoHomework.aspx?hw=hw6&showChecks=
saved date: Sat Jul 06 2019 20:26:44 GMT+0800 (中国标准时间)
--><head id=ctl00_Head1><meta charset=utf-8><style>a:link,a:visited{color:blue;text-decoration:none;font-size:24px}p{font-size:24px;margin-left:2em;color:black;padding-left:.5em;text-indent:-1em;padding-right:.5em;margin-bottom:10px}table{margin-left:2em}h2{font-size:32px;color:black;font-weight:bold}textarea{height:200px}input,textarea{margin:2px;font-size:18px;color:#030648}td{padding:4px}textarea{width:600px}input[type="text"]{width:180px}input.longtext{width:640px}div.container{width:1000px;margin:0 auto}div.main{border:solid 1px black;padding:10px}div.buttons{text-align:center;padding:12px}span.hwstateabnormal{color:blue;font-weight:bold}span.checkCorrect{color:blue}span.checkHalfCorrect{color:green}a.sayQues{color:lightcoral;font-size:smaller}span.check_showpoint{color:#3c9}.points,.points td{border:1px solid grey;border-collapse:collapse}.points tr:nth-child(3n+1){background-color:#EEE}</style><title>
小溪网--中山大学17计算机网络--做作业: 作业6
</title><link type=image/x-icon rel="shortcut icon" href=""></head>
<body style=text-align:left;font-size:24px class=vsc-initialized>
<form method=post action="./hwDoHomework.aspx?hw=hw6&showChecks=" id=aspnetForm>
<div class=aspNetHidden>
</div>
<div class=aspNetHidden>
</div>
<div>
<br>
<div class=container><div class=buttons> <input type=button class=hwdo_exit name=__exit__ id=__exit1__ value=退出></div><div class=main><p>中山大学17计算机网络<p> <hr><p>作业名称:作业6<p>作业描述:Transport Layer
<p>开始时间:2019/6/3 22:28:59<p>截止时间:2019/6/15 23:00:00<p>作业状态:<span class=hwstateabnormal>已截止</span><p>未完成题数:0 总题数:39<hr><p><p>第A节<table class=points><tbody><tr><td>1<td>2<td>3<td>4<td>5<td>6<td>7<td>8<td>9<td>10<td>11<td>12<td>13<td>14<td>15<tr><td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<td>2<tr><td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<tr><td>16<td>17<td>18<td>19<td>20<td>21<td>22<td>23<td>24<td>25<td>26<td>27<td>28<td>29<td>30<tr><td>2<td>10<td>2<td>4<td>3<td>2<td>2<td>2<td>3<td>4<td>2<td>2<td>2<td>2<td>2<tr><td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<tr><td>31<td>32<td>33<td>34<td>35<td>36<td>37<td>38<td>39<tr><td>2<td>2<td>2<td>2<td>5<td>5<td>5<td>10<td>5<tr><td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改<td>未<br>改</table><br> 总得分:0 总分:0 百分制分数:NaN<hr><br>
<h2 class=section>A.回答下面问题</h2>
<p class=question>1. 因特网传输层的主要协议为<input id=_601-1_ name=_601-1_ class="input shorttext" type=text value=TCP readonly>和<input id=_601-2_ name=_601-2_ class="input shorttext" type=text value=UDP readonly> <br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
UDP,TCP</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_601>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_601>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_601>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>2. 如果有效载荷为TCP,IP数据报的协议字段的值是什么?<br>
<input id=_602-1_ name=_602-1_ class="input shorttext" type=text value=6 readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
6</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_602>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_602>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_602>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>3. 以下哪些关于UDP协议的陈述是对的:<br>
<input id=_603-1_ name=_603-1_ class=input type=checkbox value=false disabled>A.它提供了面向连接(connect-oriented)的服务.<br>
<input id=_603-2_ name=_603-1_ class=input type=checkbox value=true checked disabled>B.传送的数据段会丢失.<br>
<input id=_603-3_ name=_603-1_ class=input type=checkbox value=false disabled>C.具有保序性.<br>
<input id=_603-4_ name=_603-1_ class=input type=checkbox value=true checked disabled>D.负责在进程之间传送数据.<br>
<input id=_603-5_ name=_603-1_ class=input type=checkbox value=false disabled>E.接收进程收到的数据段数与接收缓冲区大小有关.<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
BD</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_603>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_603>[2]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_603>[19]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>4. 下面哪个部分被加入到UDP数据段的校验和中?<br>
<input id=_604-1_ name=_604-1_ class=input type=checkbox value=true checked disabled>A.UDP header(checksum filled with 0)<br>
<input id=_604-2_ name=_604-1_ class=input type=checkbox value=true checked disabled>B.UDP data<br>
<input id=_604-3_ name=_604-1_ class=input type=checkbox value=true checked disabled>C.Source IP address<br>
<input id=_604-4_ name=_604-1_ class=input type=checkbox value=true checked disabled>D.Dest IP address<br>
<input id=_604-5_ name=_604-1_ class=input type=checkbox value=false disabled>E.TTL(1B)and protocol(1B)<br>
<input id=_604-6_ name=_604-1_ class=input type=checkbox value=false disabled>F.Header CheckSum(2B)in IP Header<br>
<input id=_604-7_ name=_604-1_ class=input type=checkbox value=true checked disabled>G.0(1B)and protocol(1B) in IP Header<br>
<input id=_604-8_ name=_604-1_ class=input type=checkbox value=false disabled>H.Length(2B)in IP datatgram<br>
<input id=_604-9_ name=_604-1_ class=input type=checkbox value=true checked disabled>I.UDP Length(2B)<br>
<input id=_604-10_ name=_604-1_ class=input type=checkbox value=false disabled>J.Iden in IP datatgram(2B)<br>
<input id=_604-11_ name=_604-1_ class=input type=checkbox value=false disabled>K.flags(3b) and offset(13b) in IP datatgram<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
A,B,C,D,G,I</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_604>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_604>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_604>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>5. 端口号1000是哪种类型的端口?<br>
<input id=_605-1_ name=_605-1_ class=input type=radio value=true checked disabled>A.well-known ports<br>
<input id=_605-2_ name=_605-1_ class=input type=radio value=false disabled>B.registered ports<br>
<input id=_605-3_ name=_605-1_ class=input type=radio value=false disabled>C.private ports<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
A</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_605>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_605>[2]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_605>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>6. TCP的紧急数据(urgent data)是带外数据,不属于字节流,true or false?<br>
<input id=_606-1_ name=_606-1_ class=input type=radio value=true checked disabled>A.true<br>
<input id=_606-2_ name=_606-1_ class=input type=radio value=false disabled>B.false<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
A</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_606>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_606>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_606>[14]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>7. 数据段中哪个标志可以令TCP协议把缓存数据立即发给接收进程?<br>
<input id=_607-1_ name=_607-1_ class=input type=radio value=false disabled>A.ack<br>
<input id=_607-2_ name=_607-1_ class=input type=radio value=false disabled>B.rst<br>
<input id=_607-3_ name=_607-1_ class=input type=radio value=true checked disabled>C.psh<br>
<input id=_607-4_ name=_607-1_ class=input type=radio value=false disabled>D.fin<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
C</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_607>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_607>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_607>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>8. 如果TCP连接出现错误,TCP协议将发送标志<input id=_608-1_ name=_608-1_ class="input shorttext" type=text value=RST readonly>为1的数据段,并立即结束连接.<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
rst</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_608>[2]</span></a> <a href=# class=sayQues>踩<span id=badcnt_608>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_608>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>9. 以下哪个TCP会话是非对称的(asymmetric)?<br>
<input id=_609-1_ name=_609-1_ class=input type=radio value=true checked disabled>A.Establish connection<br>
<input id=_609-2_ name=_609-1_ class=input type=radio value=false disabled>B.Transfer Data<br>
<input id=_609-3_ name=_609-1_ class=input type=radio value=false disabled>C.Close Connection<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
A</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_609>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_609>[3]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_609>[6]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>10. 对TCP连接而言,下面哪些叙述是正确的?<br>
<input id=_610-1_ name=_610-1_ class=input type=checkbox value=false disabled>A.TCP连接的一方接收的数据段数等于另一方发送的数据段数.<br>
<input id=_610-2_ name=_610-1_ class=input type=checkbox value=true checked disabled>B.一个进程可以与其它进程建立两个以上的TCP连接.<br>
<input id=_610-3_ name=_610-1_ class=input type=checkbox value=false disabled>C.一个TCP连接可以在三个或更多进程之间建立<br>
<input id=_610-4_ name=_610-1_ class=input type=checkbox value=false disabled>D.一个TCP连接的一方发送的数据段会按序到达另一方<br>
<input id=_610-5_ name=_610-1_ class=input type=checkbox value=false disabled>E.一个TCP连接提供无比特错的数据传送<br><br><br><span class=checkHalfCorrect>∼</span> 得分: <span class=check_showpoint>1分</span><br><textarea rows=10 cols=20 readonly>Answer:
BE
Explanation:
C.TCP连接只能在两个进程之间建立 A.D. 经过因特网可能会丢失和错序</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_610>[3]</span></a> <a href=# class=sayQues>踩<span id=badcnt_610>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_610>[5]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>11. TCP协议的数据传送服务采用哪种工作方式?<br>
<input id=_611-1_ name=_611-1_ class=input type=radio value=false disabled>A.simplex<br>
<input id=_611-2_ name=_611-1_ class=input type=radio value=false disabled>B.half duplex<br>
<input id=_611-3_ name=_611-1_ class=input type=radio value=true checked disabled>C.full duplex<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
C</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_611>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_611>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_611>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>12. 建立TCP连接的三次握手使用的标志分别是什么? <br>
<input id=_612-1_ name=_612-1_ class="input shorttext" type=text value=SYN readonly>,<input id=_612-2_ name=_612-2_ class="input shorttext" type=text value=SYN+ACK readonly>,<input id=_612-3_ name=_612-3_ class="input shorttext" type=text value=ACK readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
SYN,SYN+ACK,ACK
Explanation:
SYN+ACK:SYN=1(同步标志)和ACK=1(表示确认号有效)</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_612>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_612>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_612>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>13. 下面哪些陈述对TCP连接的初始序号(initial sequence number,ISN)是对的?<br>
<input id=_613-1_ name=_613-1_ class=input type=checkbox value=true checked disabled>A.一般采用随机数.<br>
<input id=_613-2_ name=_613-1_ class=input type=checkbox value=true checked disabled>B.第一个数据段的序号为ISN+1.<br>
<input id=_613-3_ name=_613-1_ class=input type=checkbox value=false disabled>C.两个方向的ISN必须不同.<br>
<input id=_613-4_ name=_613-1_ class=input type=checkbox value=true checked disabled>D.SYN标志表示数据段包含ISN.<br>
<input id=_613-5_ name=_613-1_ class=input type=checkbox value=false disabled>E.ISN取值一般与系统时间无关.<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
ABD</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_613>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_613>[2]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_613>[5]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>14. 下面哪四个元素决定了连接的唯一性? <br>
<input id=_614-1_ name=_614-1_ class=input type=checkbox value=true checked disabled>A.source port(TCP)<br>
<input id=_614-2_ name=_614-1_ class=input type=checkbox value=true checked disabled>B.destination port(TCP)<br>
<input id=_614-3_ name=_614-1_ class=input type=checkbox value=false disabled>C.protocol(IP)<br>
<input id=_614-4_ name=_614-1_ class=input type=checkbox value=false disabled>D.ttl(IP)<br>
<input id=_614-5_ name=_614-1_ class=input type=checkbox value=true checked disabled>E.source address(IP)<br>
<input id=_614-6_ name=_614-1_ class=input type=checkbox value=true checked disabled>F.destination address(IP)<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
ABEF</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_614>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_614>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_614>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>15. 主动发起关闭TCP连接的一方在关闭连接之前等待2MSL的原因是什么?<br>
<input id=_615-1_ name=_615-1_ class=input type=radio value=false disabled>A.恢复连接.<br>
<input id=_615-2_ name=_615-1_ class=input type=radio value=false disabled>B.防止两个连接发生冲突.<br>
<input id=_615-3_ name=_615-1_ class=input type=radio value=false disabled>C.等待接收TCP管道中的数据.<br>
<input id=_615-4_ name=_615-1_ class=input type=radio value=true checked disabled>D.等待该连接的数据在因特网中消失.<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
D</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_615>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_615>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_615>[0]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>16. 长度分别为360字节、600字节、600字节和512字节的四个数据段通过一个TCP连接连续传送. 如果第一个数据段的序号为8000,其它数据段的序号是多少?<br>
<input id=_616-1_ name=_616-1_ class="input shorttext" type=text value=8360 readonly> <input id=_616-2_ name=_616-2_ class="input shorttext" type=text value=8960 readonly> <input id=_616-3_ name=_616-3_ class="input shorttext" type=text value=9560 readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
8360 8960 9560</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_616>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_616>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_616>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>17. 下图为一个普通TCP连接的数据传送图(不使用Nagle Algorithm,Delayed ACK,Fast Retransmission,Slow start等), 请填空.<br>
<img src=""><br>
(a)<input id=_617-1_ name=_617-1_ class="input shorttext" type=text value=9000 readonly><input id=_617-2_ name=_617-2_ class="input shorttext" type=text value=700 readonly><br>
(b)<input id=_617-3_ name=_617-3_ class="input shorttext" type=text value=9700 readonly><input id=_617-4_ name=_617-4_ class="input shorttext" type=text value=300 readonly><br>
(c)<input id=_617-5_ name=_617-5_ class="input shorttext" type=text value=9700 readonly><input id=_617-6_ name=_617-6_ class="input shorttext" type=text value=300 readonly><br>
(d)<input id=_617-7_ name=_617-7_ class="input shorttext" type=text value=10000 readonly><input id=_617-8_ name=_617-8_ class="input shorttext" type=text value=0 readonly><br>
(e)<input id=_617-9_ name=_617-9_ class="input shorttext" type=text value=10000 readonly><input id=_617-10_ name=_617-10_ class="input shorttext" type=text value=1000 readonly><br>
(f)<input id=_617-11_ name=_617-11_ class="input shorttext" type=text value=10000 readonly><input id=_617-12_ name=_617-12_ class="input shorttext" type=text value=700 readonly><br>
(g)<input id=_617-13_ name=_617-13_ class="input shorttext" type=text value=10700 readonly><input id=_617-14_ name=_617-14_ class="input shorttext" type=text value=300 readonly><br>
(h)<input id=_617-15_ name=_617-15_ class="input shorttext" type=text value=10700 readonly><input id=_617-16_ name=_617-16_ class="input shorttext" type=text value=300 readonly><br>
(i)<input id=_617-17_ name=_617-17_ class="input shorttext" type=text value=11000 readonly><input id=_617-18_ name=_617-18_ class="input shorttext" type=text value=0 readonly><br><span class=quespoints>(10 points)</span><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>10分</span><br><textarea rows=10 cols=20 readonly>Answer:
(a)9000,700
(b)9700,300
(c)9700,300
(d)10000,0
(e)10000,1000
(f)10000,700
(g)10700,300
(h)10700,300
(i)11000,0</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_617>[8]</span></a> <a href=# class=sayQues>踩<span id=badcnt_617>[5]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_617>[8]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>18. 假设一个TCP连接的接收缓冲区大小为4600字节,如果该连接的一个AdvWin为<input id=_618-1_ name=_618-1_ class="input shorttext" type=text value=0 readonly>的确认到达后,紧接着AdvWin为<input id=_618-2_ name=_618-2_ class="input shorttext" type=text value=4600 readonly>的另一个确认丢失了,该连接会发生死锁现象。<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
0 4600</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_618>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_618>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_618>[0]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>19. 如何解决上题的死锁问题?<br>
<textarea id=_619-1_ name=_619-1_ class="input mytextarea" readonly>发送窗口变为0后,若发送方希望发送数据,则启动坚持定时器,定期从要发送的数据中取一个字节发出去,直到收到AdvWin不为0为止。</textarea><br><span class=quespoints>(4 points)</span><br><br><br><span>未批改</span><br><textarea rows=10 cols=20 readonly>Answer:
当发送方有数据要发送时定期发送一个字节给接收方直到收到窗口不为0的确认。</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_619>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_619>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_619>[4]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>20. 在建立TCP连接, 发送方收到接收方的参数“MSS=500, Sequ#=10000, Win=1000”之后, 发送方每10毫秒发送两个字节. 如果使用Nagle算法并且RTT等于 42ms, 问该发送方发送前三个数据段的有效载荷分别有多少字节?<br>
<input id=_620-1_ name=_620-1_ class="input shorttext" type=text value=2 readonly><input id=_620-2_ name=_620-2_ class="input shorttext" type=text value=8 readonly><input id=_620-3_ name=_620-3_ class="input shorttext" type=text value=8 readonly><br><span class=quespoints>(3 points)</span><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>3分</span><br><textarea rows=10 cols=20 readonly>Answer:
2 8 8</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_620>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_620>[4]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_620>[8]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>21. 一个TCP连接的接收缓冲区大小为2000, 接收方提出的MSS为500。如果使用了Clark算法,在发送了AdvWin=0的确认之后,接收方空闲块的大小为多少字节时才发送下一个确认? <br>
<input id=_621-1_ name=_621-1_ class="input shorttext" type=text value=500 readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
至少为500
Explanation:
空闲块的大小到达接收缓冲区的一半或MSS</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_621>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_621>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_621>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>22. 对于快速重传(fast retransmission), 收到多少个对某个数据段序号的确认(表示期待接收该数据段)将触发数据的重传? <br>
<input id=_622-1_ name=_622-1_ class="input shorttext" type=text value=4 readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
4
Explanation:
重复收到3个,总共收到4个</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_622>[6]</span></a> <a href=# class=sayQues>踩<span id=badcnt_622>[9]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_622>[3]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>23. 只要发送或存在未确认的数据帧,就要启动超时定时器,true or false?<br>
<input id=_623-1_ name=_623-1_ class=input type=checkbox value=true checked disabled>A.A.true<br>
<input id=_623-2_ name=_623-1_ class=input type=checkbox value=false disabled>B.B.false<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
A</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_623>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_623>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_623>[3]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>24. 如果只有最后三个连续发送的数据段被丢失,其它数据段全部收到且RTT一直保持20ms, 从这三个数据段的第一个数据段发送开始计时,还需要多少时间(ms)才可以全部收到这三个数据段的确认? <br>
<input id=_624-1_ name=_624-1_ class="input shorttext" type=text value=200 readonly><br><span class=quespoints>(3 points)</span><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>3分</span><br><textarea rows=10 cols=20 readonly>Answer:
200
Explanation:
20+20 + 40+20 + 80+20
= 40+60+100
= 200
一个TCP连接的发送方只有一个超时定时器,只针对未收到确认的第一个数据段启动。
karn算法:每次超时重传,timeoutInterval加倍;后续发送的数据段都采用当前的timeoutInterval,重传的数据段的ACK不用来计算timeoutInterval。</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_624>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_624>[4]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_624>[37]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>25. 采用Jacobson算法计算TCP会话的超时时间,如果EstimatedRTT=10ms, DevRTT=1ms, SampledRTT=20ms, 问:新的DevRTT、EstimatedRTT和TimeoutInteval分别为多少毫秒? <br>
<input id=_625-1_ name=_625-1_ class="input shorttext" type=text value=3.25 readonly><br>
<input id=_625-2_ name=_625-2_ class="input shorttext" type=text value=11.25 readonly><br>
<input id=_625-3_ name=_625-3_ class="input shorttext" type=text value=24.25 readonly><br><span class=quespoints>(4 points)</span><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>4分</span><br><textarea rows=10 cols=20 readonly>Answer:
3.25 11.25 24.25
Explanation:
EstimatedRTT(new) = EstimatedRTT + a ×(SampleRTT- EstimatedRTT) a=1/8
DevRTT(new) =(1-b)*DevRTT+ b*|SampleRTT- EstimatedRTT| (typically, b=1/4)
TimeoutInterval = EstimatedRTT(new) + 4*DevRTT(new)
===================================================
SampleRTT- EstimatedRTT = 10ms
EstimatedRTT(new) = 10ms + 1/8 * 10ms = 11.25ms
DevRTTRTT(new) = 3/4*1ms + 1/4 * 10ms = 3.25ms
TimeoutInterval = EstimatedRTT + 4*DevRTT = 11.25+4*3.25=24.25ms</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_625>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_625>[2]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_625>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>26. 如果一个TCP数据段的传送在超时时间(30ms)内未收到确认, 重传数据段的超时时间应该设为多少毫秒? <br>
<input id=_626-1_ name=_626-1_ class="input shorttext" type=text value=60 readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
60</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_626>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_626>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_626>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>27. 如果window scale = 4 并且 advertisedWindow = 65534, SWS(Send Window Size)=? *不考虑CongWin.<br>
<input id=_627-1_ name=_627-1_ class="input shorttext" type=text value=1,048,544 readonly><br><br><br><span>未批改</span><br><textarea rows=10 cols=20 readonly>Answer:
1048544
Explanation:
AdvWin =65534*2^4 SWS=min{AdvWin,CongWin}=AdvWin
这里不考虑CongWin</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_627>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_627>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_627>[2]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>28. TCP长肥管道中的同序号数据段应该采用什么选项区分它们? <br>
<input id=_628-1_ name=_628-1_ class=input type=checkbox value=false disabled>A.A.WinScale<br>
<input id=_628-2_ name=_628-1_ class=input type=checkbox value=false disabled>B.B.Selective Acknowledgement<br>
<input id=_628-3_ name=_628-1_ class=input type=checkbox value=false disabled>C.C.MSS<br>
<input id=_628-4_ name=_628-1_ class=input type=checkbox value=true checked disabled>D.D.timestamp<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
D</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_628>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_628>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_628>[0]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>29. 下面哪些陈述是正确的?<br>
<input id=_629-1_ name=_629-1_ class=input type=checkbox value=false disabled>A.A.Flow control prevents too many data from being sent into network.<br>
<input id=_629-2_ name=_629-1_ class=input type=checkbox value=true checked disabled>B.B.Congestion control prevents too many data from being sent into network.<br>
<input id=_629-3_ name=_629-1_ class=input type=checkbox value=true checked disabled>C.C.Flow control prevents too many data from being sent to receiver.<br>
<input id=_629-4_ name=_629-1_ class=input type=checkbox value=false disabled>D.D.Congestion control prevents too many data from being sent to receiver.<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
BC</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_629>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_629>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_629>[2]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>30. 如果AdvWin等于20000,CongWin等于1000, SWS(Sending Window Size)等于多少?<br>
<input id=_630-1_ name=_630-1_ class="input shorttext" type=text value=1000 readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
1000</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_630>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_630>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_630>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>31. 如果AIMD(Additive Increase Multiplicative Decrease)用于TCP连接的拥塞控制, 当发生拥塞时, CongWin=10MSS, 它的新的CongWin是多少?<input id=_631-1_ name=_631-1_ class="input shorttext" type=text value=5MSS readonly><br>
在4个RTT之后, 它的CongWin又是多少? <input id=_631-2_ name=_631-2_ class="input shorttext" type=text value=9MSS readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
5MSS 9MSS</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_631>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_631>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_631>[1]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>32. 假设Tahoe算法被用于TCP连接的拥塞控制, 当超时发生时, CongWin等于16MSS, 如果期间没有发生超时,在5个RTT之后CongWin是多少? <input id=_632-1_ name=_632-1_ class="input shorttext" type=text value=10MSS readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
10MSS
Explanation:
2mss,4Mss,8mss,9mss,10Mss</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_632>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_632>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_632>[6]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>33. 假设Reno算法(快速恢复算法)被用于TCP连接的拥塞控制, 当收到三个重复的ACK时, CongWin等于16MSS, 如果期间没有发生超时,在5个RTT之后CongWin是多少? <br>
<input id=_633-1_ name=_633-1_ class="input shorttext" type=text value=13MSS readonly><br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
13MSS
Explanation:
9MSS,10MSS,11MSS,12MSS,13MSS</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_633>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_633>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_633>[0]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>34. 发送FIN数据段的一方说明它不再发送任何数据了,true or false?<br>
<input id=_634-1_ name=_634-1_ class=input type=radio value=true checked disabled>A.true<br>
<input id=_634-2_ name=_634-1_ class=input type=radio value=false disabled>B.false<br><br><br><span class=checkCorrect>√</span> 得分: <span class=check_showpoint>2分</span><br><textarea rows=10 cols=20 readonly>Answer:
A</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_634>[2]</span></a> <a href=# class=sayQues>踩<span id=badcnt_634>[2]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_634>[4]</span></a> <a href=# class=sayQues>问老师</a></p>
<br>
<p class=question>35. 请说明使用一次握手建立TCP连接会出现什么问题.<br>
<textarea id=_635-1_ name=_635-1_ class="input mytextarea" readonly>一次握手:客户端向服务器发出连接请求,然后立即认为连接建立成功。
如果这个连接请求丢失(丢包),那么服务器完全不知道有客户端正在连接自己,因此实际上根本就没有建立起连接,后续的数据发送等行为根本就不能保证。
即使请求没有丢失,如果服务器不向客户端确认,那么客户端和服务器就无法协商序号等信息,难以保证连接的可靠性。</textarea><br><span class=quespoints>(5 points)</span><br><br><br><span>未批改</span><br><textarea rows=10 cols=20 readonly>Answer:
只有一次握手的话,也就是说客户端只要发送了连接请求就认为TCP连接,也许服务器根本就不存在或者没打开。如果继续发送数据的话,浪费带宽。再说客户端也需要服务器传来的初始序号和很多选项,这个都做不到。</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_635>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_635>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_635>[0]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>36. 请说明使用二次握手建立TCP连接会出现什么问题.<br>
(考虑恶意攻击的情况)<br>
<textarea id=_636-1_ name=_636-1_ class="input mytextarea" readonly>考虑请求滞留的情况。如果客户端向服务器发送SYN请求建立连接的包在网络中滞留,超时到达服务器,服务器并不知道发生了超时,因此服务器向客户端返回一个确认,然后服务器进入连接状态;而客户端早已因为超时而放弃了这个连接请求,即使收到了服务器发来的确认,也不会进入连接状态。因此客户端和服务器的状态不一致。
考虑恶意攻击的情况。如果使用两次握手,那么将会导致拒绝服务攻击(DoS)泛滥。攻击者可以伪造源IP地址,并向服务器快速地发送大量请求建立连接的数据包。服务器接收到了大量连接请求,必须回复确认,然后认为已经建立了连接,服务器将消耗大量的资源维护这些虚假的连接,而无法处理正常的连接请求。</textarea><br><span class=quespoints>(5 points)</span><br><br><br><span>未批改</span><br><textarea rows=10 cols=20 readonly>Answer:
只有两次握手的话,服务器可能会因为遭遇恶意攻击而瘫痪:客户端可以发送大量伪造源地址的连接请求,服务器确认后以为连接已经建立,最后会耗尽资源。(网上查询DoS攻击)</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_636>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_636>[0]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_636>[0]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>37. 请说明使用三次握手建立TCP连接不能避免恶意攻击的情况.<br>
<textarea id=_637-1_ name=_637-1_ class="input mytextarea" readonly>三次握手的攻击手段是分布式拒绝服务(DDoS),攻击者提前通过控制肉鸡的方式获得许多电脑的控制权,攻击时,许多不同IP的电脑同时向同一个服务器发送大量连接请求。每台参与攻击的电脑只需维护少量的连接,而服务器却要同时维护与大量电脑的连接,服务器将消耗大量的资源维护这些的连接,而无法处理正常的连接请求。所以收三次握手建立TCP连接仍然不能避免恶意攻击。</textarea><br><span class=quespoints>(5 points)</span><br><br><br><span>未批改</span><br><textarea rows=10 cols=20 readonly>Answer:
即使用三次握手,服务器也可能会因为遭遇恶意攻击而瘫痪,不过难度增加了很多。(网上查询DDoS攻击)</textarea><br><a href=# class=sayQues>赞<span id=goodcnt_637>[0]</span></a> <a href=# class=sayQues>踩<span id=badcnt_637>[2]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_637>[2]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>38. 在下图中,R1和R2为路由器,S1为二层交换机,S2为三层交换机并配置了VLAN10和VLAN20的虚接口。R1到R2为一个配置了IP地址并使用PPP协议的点到点网络,其它四个(VLAN10,VLAN20,R1~R10,R2~H5)子网都是以太网。如果所有主机、三层交换机和路由器都正确配置了接口的IP地址,三层交换机和路由器都启动了OSPF协议,R1的默认路由指向R10并被发布到OSPF协议,问:H1 ping H3、H1 ping H4、H1 ping H5时依次经过了哪些设备(主机和路由器)以及它们分别使用了以下哪种协议?<br>
*只用写单程,只考虑把IP分组从源主机传送至目的主机。<br>
*只写数字,中间不要加逗号或空格,例如:H1:9653 S1:132 S2:13 H3:8。(只是答案的格式例子,不针对任何问题)<br>
*ARP协议包含了获得MAC地址的整个过程,即不用写它使用的以太网协议和透明网桥算法。 <br>
*对于传送数据帧的双方,只需要在发送方写(2)和(3)。<br>
<img src=""><br>
可选项:<br>
(1)透明网桥算法(带VLAN)<br>
(2)802.1Q协议(trunk)<br>
(3)以太网协议<br>
(4)ARP协议(IP地址为下一跳)<br>
(5)ARP协议(IP地址为IP分组的目的地址)<br>
(6)查询路由表<br>
(7)PPP协议<br>
(8)从收到的帧中取出IP分组<br>
(9)从上层收到IP分组<br>
H1 ping H3:<input id=_638-1_ name=_638-1_ class="input longtext" type=text value="H1:9653 S1:123 S2:13 H3:8" readonly><br>
H1 ping H4:<input id=_638-2_ name=_638-2_ class="input longtext" type=text value="H1:9653 S1:123 S2:8653 H4:8" readonly><br>
H1 ping H5:<input id=_638-3_ name=_638-3_ class="input longtext" type=text value="H1:9653 S1:123 S2:86423 S1:13 R1:8647 R2:8653 H5:8" readonly><br><span class=quespoints>(10 points)</span><br><br><br><span>未批改</span><br><textarea rows=10 cols=20 readonly>Answer:
转发数据包或ARP协议时,只要发送出去,都要封装成帧。如果转出去的接口是以太网,则要封装成802.3的帧,并用CSMA/CD从物理层发送出去。答案省略了所有以太网协议(3)。
H1 ping H3 => H1:965 S1:12 S2:21 H3:8
H1 ping H4 => H1:964 S1:12 S2:2865 H4:8
H1 ping H5 => H1:964 S1:12 S2:28642 S1:21 R1:867 R2:7865 H5:8
Explanation:
(9)从上层收到IP分组
改为
(9)网络层从上层收到数据并封装为IP分组
最后一问把接收方的以太网、802.1Q也加入了。 </textarea><br><a href=# class=sayQues>赞<span id=goodcnt_638>[6]</span></a> <a href=# class=sayQues>踩<span id=badcnt_638>[1]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_638>[39]</span></a> <a href=# class=sayQues>问老师</a></p>
<p class=question>39. 接上题,增加两个可选项,H1 ping 外网IP地址时依次使用了以下哪种协议?(只用写单程,只用考虑到R10转发出去,不必考虑后续转发步骤)<br>
(10)匹配了默认路由<br>
(11)NAT<br>
H1 ping 外网地址:<input id=_639-1_ name=_639-1_ class="input longtext" type=text value="H1:9653 S1:123 S2:86423 S1:13 R1:86(10)(11)4" readonly><br><span class=quespoints>(5 points)</span><br><br><br><span>未批改</span><br><textarea rows=10 cols=20 readonly>Answer:
10用A表示 11用B表示。省略了所有以太网CSMA/CD (3)
H1:964 S1:12 S2:286A42 S1:21 R1:86AB4 R10:86A... </textarea><br><a href=# class=sayQues>赞<span id=goodcnt_639>[1]</span></a> <a href=# class=sayQues>踩<span id=badcnt_639>[7]</span></a> <a href=# class=sayQues>求讲解<span id=explaincnt_639>[28]</span></a> <a href=# class=sayQues>问老师</a></p></div><div class=buttons> <input type=button class=hwdo_exit name=__exit__ id=__exit2__ value=退出><span id=readonly style=display:none></span></div></div><br>
<br>
<p id=msg></p>
</div>
</form>