-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
681 lines (622 loc) · 31.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
<!DOCTYPE HTML>
<html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Jilan Xu</title>
<meta name="author" content="Jilan Xu">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" type="text/css" href="stylesheet.css">
<link rel="icon" type="image/png" href="images/seal_icon.png">
</head>
<body>
<table style="width:100%;max-width:1000px;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
<tr style="padding:0px">
<td style="padding:0px">
<table style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
<tr style="padding:0px">
<td style="padding:2.5%;width:65%;vertical-align:middle">
<p style="text-align:center">
<name>Jilan Xu</name>
<br>
<a href="mailto:[deletethis] jilanxu18@fudan.edu.cn", style="color:grey">jilanxu18 at fudan dot edu dot cn</a>
<br>
<br>
<font size=4>
<p>I am a final year PhD student at Fudan University, advised by Professor <a href="https://cs.fudan.edu.cn/3e/d0/c25921a278224/page.htm###"><font size="4">Yuejie Zhang</font></a>. I also work closely with Professor <a href="https://weidixie.github.io/"><font size="4">Weidi Xie</font></a>. My research focuses on multimodal machine learning, video understanding, and medical image analysis. I hope that someday medical AI agents would heal the world, make it a better place, for the entire human race.
<p style="text-align:center">
<a href="https://scholar.google.com/citations?user=mf2U64IAAAAJ&hl=en&oi=ao"><font size=4>Google Scholar</font></a>  / 
<a href="https://twitter.com/JazzzCharles"><font size=4>Twitter</font></a>  / 
<a href="https://github.com/Jazzcharles"><font size=4>GitHub</font> </a>  / 
<a href="https://www.zhihu.com/people/Jazz_charles"><font size=4>Zhihu</font></a> 
</p>
</font>
</td>
<style>
</style>
<td style="padding:2.5%;width:40%;max-width:40%">
<a href="images/icon2_square.jpeg"><img style="width:70%;max-width:70%;border-radius:50%" alt="profile photo" src="images/icon2_square.jpeg" class="img-circle" ></a>
</td>
</tr>
</tbody></table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="30"><tbody>
<tr>
<td>
<heading><font color="red">News</font></heading>
<font size=4>
<p>
<ul style="line-height: 1.8;">
<li style="margin-bottom: 12px;">
<strong><font size=5 color="red">I'm actively looking for postdoc/job positions in 2025, please feel free to email me!</font></strong>
</li>
<li style="margin-bottom: 12px;">
[01/2025] Three Papers (<strong><font size=4>XGen</font></strong>, <strong><font size=4>EgoVideo</font></strong>, <strong><font size=4>CGBench</font></strong>) accepted to ICLR 2025!!!
</li>
<li style="margin-bottom: 12px;">
[01/2025] Honored to be invited to give a talk on joint egocentric-exocentric video understanding at <a href="https://www.techbeat.net/talk-info?id=940"><font size=4>TechBeat</font></a>
</li>
<li style="margin-bottom: 12px;">
[05/2024] Our CVPR papers <strong><font size=4>Egoinstructor</font></strong> and <strong><font size=4>EgoExoLearn</font></strong> are also accepted to 1st LPVL Workshop @ CVPR 2024
</li>
<li style="margin-bottom: 12px;">
[04/2024] We rank <strong>1st</strong> at 4th-COV19D Competition Track 2 and 4th at Track1 @ CVPR 2024
</li>
</ul>
</p>
</font>
</td>
</tr>
</tbody></table>
<!-- <table style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<heading>Research</heading>
</td>
</tr>
</tbody></table>
<style>
img {
border-radius: 15px;
}
</style> -->
<table style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<heading>Research</heading>
</td>
</tr>
</tbody></table>
<div class="tab">
<button class="tablinks active" onclick="openTab(event, 'ComputerVision')">Computer Vision</button>
<button class="tablinks" onclick="openTab(event, 'Medical')">Medical Image Analysis</button>
</div>
<div id="ComputerVision" class="tabcontent" style="display:block;">
<!-- 将Computer Vision相关的研究项目放在这里 -->
<table style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
<!-- 这里放置Computer Vision相关的项目 -->
<tr></tr>
<td style="padding:20px;width:10%;vertical-align:middle;">
<img src="images/xgen_teaser_square.png" alt="xgen" width="250" height="250">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org">
<papertitle style="font-size: 20px";> XGen: Egocentric Video Prediction by Watching Exocentric Videos </papertitle>
</a>
<br>
<b>Jilan Xu</b>, Yifei Huang, Baoqi Pei, Junlin Hou, Qingqiu Li, Guo Chen, Yuejie Zhang, Rui Feng, Weidi Xie
<br>
<em>ICLR</em> 2025  
<br>
<!-- <a href="https://arxiv.org"> <font size=4>arXiv</font></a> / <a href="https://egoexolearn.github.io/"><font size=4>project page</font></a> / <a href="https://github.com/OpenGVLab/EgoExoLearn"><font size=4>code</font></a> -->
<p></p>
<p>
<font size=4>
A cross-view video prediction model that predicts future egocentric video frames by leveraging paired exocentric video and text instructions.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:10%;vertical-align:middle;">
<img src="images/egovideo.png" alt="egovideo" width="280" height="240">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org">
<papertitle style="font-size: 20px";> Modeling Fine-Grained Hand-Object Dynamics for Egocentric Video Representation Learning </papertitle>
</a>
<br>
Baoqi Pei, Yifei Huang, <b>Jilan Xu</b>, Guo Chen, Yuping He, Lijin Yang, Yali Wang, Weidi Xie, Yu Qiao, Fei Wu, Limin Wang
<br>
<em>ICLR</em> 2025  
<br>
<!-- <a href="https://arxiv.org/pdf/2403.16182.pdf"> <font size=4>arXiv</font></a> / <a href="https://egoexolearn.github.io/"><font size=4>project page</font></a> / <a href="https://github.com/OpenGVLab/EgoExoLearn"><font size=4>code</font></a> -->
<p></p>
<p>
<font size=4>
An egocentric video-language model that learns fine-grained egocentric video representations by modeling hand-object dynamics.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:10%;vertical-align:middle;">
<img src="images/cgbench2.png" alt="cgbench" width="250" height="250">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2412.12075">
<papertitle style="font-size: 20px";> CG-Bench: Clue-grounded Question Answering Benchmark for Long Video Understanding </papertitle>
</a>
<br>
Guo Chen*, Yicheng Liu*, Yifei Huang*, Yuping He, Baoqi Pei, Jilan Xu, Yali Wang, Tong Lu, Limin Wang
<br>
<em>ICLR</em> 2025  
<br>
<a href="https://arxiv.org/pdf/2412.12075"> <font size=4>arXiv</font></a> / <a href="https://cg-bench.github.io/leaderboard/"><font size=4>project page</font></a> / <a href="https://github.com/CG-Bench/CG-Bench"><font size=4>code</font></a>
<p></p>
<p>
<font size=4>
A clue-grounded question answering benchmark for long video understanding.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:10%;vertical-align:middle;">
<img src="images/egoexolearn.png" alt="egoexolearn" width="280" height="220">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2403.16182">
<papertitle style="font-size: 20px";> EgoExoLearn: A Dataset for Bridging Asynchronous Ego- and Exo-centric View of Procedural Activities in Real World </papertitle>
</a>
<br>
Yifei Huang*, Guo Chen*, <b>Jilan Xu*</b>, Mingfang Zhang*, Baoqi Pei, Hongjie Zhang, Lu Dong, Yali Wang, Limin Wang, Yu Qiao,
<br>
<em>CVPR</em> 2024  
<br>
<a href="https://arxiv.org/pdf/2403.16182.pdf"> <font size=4>arXiv</font></a> / <a href="https://egoexolearn.github.io/"><font size=4>project page</font></a> / <a href="https://github.com/OpenGVLab/EgoExoLearn"><font size=4>code</font></a>
<p></p>
<p>
<font size=4>
A cross-view benchmark dataset that emulates the human demonstration following process, containing recorded egocentric videos guided by exocentric-view demonstration videos.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:10%;vertical-align:middle;">
<img src="images/egoinstructor.png" alt="egoinstructor" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2401.00789">
<papertitle style="font-size: 20px";> Retrieval-Augmented Egocentric Video Captioning </papertitle>
</a>
<br>
<b>Jilan Xu</b>, Yifei Huang, Junlin Hou, Guo Chen, Yuejie Zhang, Rui Feng, Weidi Xie
<br>
<em>CVPR</em> 2024  
<br>
<a href="https://arxiv.org/pdf/2401.00789.pdf"> <font size=4>arXiv</font></a> / <a href="https://jazzcharles.github.io/Egoinstructor"><font size=4>project page</font></a> / <a href="https://github.com/Jazzcharles/Egoinstructor"><font size=4>code</font></a>
<p></p>
<p>
<font size=4>
Given an egocentric video, Egoinstructor automatically retrieves relevant exocentric instructional videos for assisting egocentric video captioning.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/ovsegmentor.png" alt="ovsegmentor" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2301.09121">
<papertitle style="font-size: 20px";> Learning Open-vocabulary Semantic Segmentation Models From Natural Language Supervision </papertitle>
</a>
<br>
<b>Jilan Xu</b>, Junlin Hou, Yuejie Zhang, Rui Feng, Yi Wang, Yu Qiao, Weidi Xie
<br>
<em>CVPR</em> 2023  
<br>
<a href="https://arxiv.org/pdf/2301.09121.pdf"><font size=4>arXiv</font></a> / <a href="https://jazzcharles.github.io/OVSegmentor"><font size=4>project page</font></a> / <a href="https://github.com/Jazzcharles/OVSegmentor"><font size=4>code</font></a>
<p></p>
<p>
<font size=4>
Training open-vocabulary semantic segmentation models with image-text pairs only, which enables zero-transfer to various segmentation datasets.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/cream.png" alt="cream" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2205.13922">
<papertitle style="font-size: 20px";> CREAM: Weakly supervised object localization via class re-activation mapping </papertitle>
</a>
<br>
<b>Jilan Xu</b>, Junlin Hou, Yuejie Zhang, Rui Feng, Rui-Wei Zhao, Tao Zhang, Xuequan Lu, Shang Gao
<br>
<em>CVPR</em> 2022  
<br>
<a href="https://arxiv.org/pdf/2205.13922.pdf"><font size=4>arXiv</font></a>
<p></p>
<p>
<font size=4>
A weakly-supervised object localization model that generates better CAMs via soft-clustering algorithms.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/ovoad.png" alt="cream" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://openreview.net/forum?id=PWzB2V2b6R">
<papertitle style="font-size: 20px";> Does video-text pretraining help open vocabulary online action detection </papertitle>
</a>
<br>
Qingsong Zhao, Yi Wang, <b>Jilan Xu</b>, Yinan He, Zifan Song, Limin Wang, Yu Qiao, Cairong Zhao
<br>
<em>NeurIPS</em> 2024  
<br>
<a href="https://openreview.net/forum?id=PWzB2V2b6R"><font size=4>arXiv</font></a>
<p></p>
<p>
<font size=4>
A zero-shot online action detector that leverages vision-language models and enables open-world temporal understanding.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/internvideo.png" alt="internvideo" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2212.03191">
<papertitle style="font-size: 20px";> InternVideo: General Video Foundation Models via Generative and Discriminative Learning </papertitle>
</a>
<br>
Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, <b>Jilan Xu</b>, Yi Liu, Zun Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali Wang, Limin Wang, Yu Qiao
<br>
<em>Tech report</em> 2022  
<br>
<a href="https://arxiv.org/pdf/2212.03191.pdf"><font size=4>arXiv</font></a> / <a href="https://github.com/OpenGVLab/InternVideo"><font size=4>code</font></a>
<p></p>
<p>
<font size=4>
A fundation model for video / video-text understanding, achieving SOTA over 30 benchmark datasets.
</font>
</p>
</td>
</tr>
</tbody></table>
</div>
<div id="Medical" class="tabcontent">
<!-- 将Medical相关的研究项目放在这里 -->
<table style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
<!-- 这里放置Medical相关的项目 -->
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/caw.png" alt="caw" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2404.05997">
<papertitle style="font-size: 20px";> Concept-Attention Whitening for Interpretable Skin Lesion Diagnosis </papertitle>
</a>
<br>
Junlin Hou, <b>Jilan Xu</b>, Hao Chen
<br>
<em>MICCAI</em> 2024  
<br>
<a href="https://arxiv.org/pdf/2404.05997"><font size=4>arXiv</font></a>
<p></p>
<p>
<font size=4>
An XAI framework that aligns the axes of the latent space with concepts of interest for interpretable skin lesion diagnosis.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/anatomy.png" alt="caw" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2403.09294">
<papertitle style="font-size: 20px";> Anatomical structure-guided medical vision-language pre-training </papertitle>
</a>
<br>
Qingqiu Li, Xiaohan Yan, <b>Jilan Xu</b>, Runtian Yuan, Yuejie Zhang, Rui Feng, Quanli Shen, Xiaobo Zhang, Shujun Wang
<br>
<em>MICCAI</em> 2024  
<br>
<a href="https://arxiv.org/pdf/2403.09294"><font size=4>arXiv</font></a>
<p></p>
<p>
<font size=4>
An Anatomical Structure-Guided visual-text pre-training framework that leverages the anatomical knowledge.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/cmcv2.png" alt="cmcv2" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://arxiv.org/abs/2211.14557">
<papertitle style="font-size: 20px";> CMC_v2: Towards More Accurate COVID-19 Detection with Discriminative Video Priors </papertitle>
</a>
<br>
Junlin Hou, <b>Jilan Xu</b>, Nan Zhang, Yi Wang, Yuejie Zhang, Xiaobo Zhang, Rui Feng
<br>
<em>ECCV</em> 2022 AIMIA Workshop  
<br>
<a href="https://arxiv.org/pdf/2211.14557.pdf"><font size=4>arXiv</font></a> / <a href="https://github.com/houjunlin/Team-FDVTS-COVID-Solution"><font size=4>code</font></a>
<p></p>
<p>
<font size=4>
A Transformer-based model with contrastive representation enhancement. Winner of the 2nd COVID-19 Detection in ECCV 2022.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/tccnet.png" alt="tccnet" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://www.ijcai.org/proceedings/2022/0155.pdf">
<papertitle style="font-size: 20px";> TCCNet: Temporally Consistent Context-Free Network for Semi-supervised Video Polyp Segmentation </papertitle>
</a>
<br>
Xiaotong Li, <b>Jilan Xu</b>, Yuejie Zhang, Rui Feng, Rui-Wei Zhao, Tao Zhang, Xuequan Lu, Shang Gao
<br>
<em>IJCAI</em> 2022, Oral  
<br>
<a href="https://www.ijcai.org/proceedings/2022/0155.pdf"><font size=4>paper</font></a>
<p></p>
<p>
<font size=4>
Co-training a model for semi-supervised video polyp segmentation, achieving comparable results using only 15% labeled data.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/cmcv1.png" alt="cmcv1" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://openaccess.thecvf.com/content/ICCV2021W/MIA-COV19D/papers/Hou_CMC-COV19D_Contrastive_Mixup_Classification_for_COVID-19_Diagnosis_ICCVW_2021_paper.pdf">
<papertitle style="font-size: 20px";> CMC-COV19D: Contrastive Mixup Classification for COVID-19 Diagnosis </papertitle>
</a>
<br>
Junlin Hou*, <b>Jilan Xu*</b>, Rui Feng, Yuejie Zhang, Fei Shan, Weiya Shi
<br>
<em>ICCV</em> 2021, AIMIA Workshop.  
<br>
<a href="https://openaccess.thecvf.com/content/ICCV2021W/MIA-COV19D/papers/Hou_CMC-COV19D_Contrastive_Mixup_Classification_for_COVID-19_Diagnosis_ICCVW_2021_paper.pdf"><font size=4>paper</font></a> / <a href="https://github.com/houjunlin/Team-FDVTS-COVID-Solution"><font size=4>code</font></a>
<p></p>
<p>
<font size=4>
A ResNest-50 model combined with contrastive mixup technique for 3D COVID-19 CT image classification. Winner of the 1st COVID-19 detection challenge.
</font>
</p>
</td>
</tr>
<tr>
<td style="padding:20px;width:25%;vertical-align:middle">
<img src="images/drl.png" alt="drl" width="280" height="200">
</td>
<td width="75%" valign="middle" style="font-size: 18px;">
<a href="https://ieeexplore.ieee.org/document/9313159/#:~:text=Data-Efficient%20Histopathology%20Image%20Analysis%20with%20Deformation%20Representation%20Learning,are%20often%20expensive%20and%20laborious%20in%20realworld%20scenarios.">
<papertitle style="font-size: 20px";> Data-Efficient Histopathology Image Analysis with Deformation Representation Learning </papertitle>
</a>
<br>
<b>Jilan Xu</b>, Junlin Hou, Yuejie Zhang, Rui Feng, Chunyang Ruan, Tao Zhang, Weiguo Fan
<br>
<em>BIBM</em> 2020, Oral  
<br>
<a href="https://ieeexplore.ieee.org/document/9313159/#:~:text=Data-Efficient%20Histopathology%20Image%20Analysis%20with%20Deformation%20Representation%20Learning,are%20often%20expensive%20and%20laborious%20in%20realworld%20scenarios."><font size=4>paper</font></a>
<p></p>
<p>
<font size=4>
Introducing a self-supervised deformation representation learning technique for histopathology image analysis.
</font>
</p>
</td>
</tr>
</tbody></table>
</div>
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
img {
border-radius: 15px;
}
.tab {
overflow: hidden;
background-color: #f8f8f8;
font-family: 'Roboto', sans-serif;
}
.tab button {
background-color: inherit;
float: left;
border: none;
outline: none;
cursor: pointer;
padding: 14px 16px;
transition: 0.3s;
font-size: 18px;
font-weight: bold;
color: #333;
}
.tab button:hover {
background-color: #ddd;
}
.tab button.active {
background-color: #fff;
border-bottom: 3px solid #4CAF50;
}
.tabcontent {
display: none;
padding: 20px 0;
border: none;
}
.tabcontent table {
border: none;
}
</style>
<script>
function openTab(evt, tabName) {
var i, tabcontent, tablinks;
tabcontent = document.getElementsByClassName("tabcontent");
for (i = 0; i < tabcontent.length; i++) {
tabcontent[i].style.display = "none";
}
tablinks = document.getElementsByClassName("tablinks");
for (i = 0; i < tablinks.length; i++) {
tablinks[i].className = tablinks[i].className.replace(" active", "");
}
document.getElementById(tabName).style.display = "block";
evt.currentTarget.className += " active";
}
</script>
<table style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
</tbody></table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20"><tbody>
<tr>
<td>
<heading>Awards & Honors</heading>
<font size=4>
<p>
<ul>
<li>Winner of the 4th-COV19D Competition Track 2 (COVID19 Domain Adaptation Challenge) and rank 4th at Track1 (COVID-19 Detection Challenge) @ CVPR 2024</li>
<li>Winner of the MMAC Challenge Track1 (Classification of Myopic Maculopathy) and Track2 (Segmentation of Myopic Maculopathy Plus Lesions) @ MICCAI 2023</li>
<li>Winner of the 1st & 2nd COVID-19 Detection Challenge @ ICCV 2021 & ECCV 2022</li>
<li>Winner of the 1st COVID-19 Severity Detection Challenge @ ECCV 2022</li>
<li>VenusTech Enterprise Scholarship</li>
</ul>
</p>
</font>
</td>
</tr>
</tbody></table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20"><tbody>
<tr>
<td>
<heading>Working Experience</heading>
<div class="experience-container">
<div class="experience-item">
<img src="images/shanghai-ai-lab-logo.png" class="company-logo" alt="Shanghai AI Laboratory Logo">
<div class="experience-content">
<div class="company">Shanghai AI Laboratory</div>
<div class="role">Research Intern</div>
<div class="supervisor">Supervised by Dr. Yifei Huang, Yi Wang and Prof. Yu Qiao</div>
</div>
</div>
<div class="experience-item">
<img src="images/bell-ai-logo.png" class="company-logo" alt="Bell AI Lab Logo">
<div class="experience-content">
<div class="company">Bell AI Lab, Shanghai</div>
<div class="role">Research Intern</div>
<div class="supervisor">Supervised by Dr. Chenhui Ye</div>
</div>
</div>
<div class="experience-item">
<img src="images/google-logo.png" class="company-logo" alt="Google Logo">
<div class="experience-content">
<div class="company">Google Winter AI Camp</div>
<div class="achievement">🏆 Best Presentation Award Winner</div>
</div>
</div>
<div class="experience-item">
<img src="images/morgan-stanley-logo.png" class="company-logo" alt="Morgan Stanley Logo">
<div class="experience-content">
<div class="company">Morgan Stanley Technology</div>
<div class="role">Software Engineering Intern</div>
<div class="supervisor">Supervised by Ray Zhou</div>
</div>
</div>
</div>
<style>
.experience-container {
font-size: 16px;
line-height: 1.8;
}
.experience-item {
margin-bottom: 15px;
padding: 5px;
border-left: 3px solid #007bff;
background: #f8f9fa;
display: flex;
align-items: center;
gap: 20px;
}
.company-logo {
width: 100px;
height: 100px;
object-fit: contain;
flex-shrink: 0;
}
.experience-content {
flex-grow: 1;
}
.company {
font-weight: bold;
color: #2c3e50;
}
.role {
color: #666;
margin-top: 3px;
}
.supervisor {
color: #666;
font-style: italic;
margin-top: 3px;
}
.achievement {
color: #28a745;
margin-top: 3px;
}
</style>
</td>
</tr>
</tbody></table>
<table width="100%" align="center" border="0" cellspacing="0" cellpadding="20"><tbody>
<tr>
<td>
<heading>Academic Services</heading>
<p>
<font size=4>
<strong> <font size=4>Conference Reviewer</font> </strong>: ICLR25, NeurIPS24, ECCV24, MICCAI24, CVPR24, CVPR23, ICCV23, NeurIPS22
</font>
</p>
<p>
<font size=4>
<strong> <font size=4>Journal Reviewer</font> </strong>: Nature Communications, TPAMI, IJCV, TMM, NeuroComputing
</font>
</p>
<p>
<font size=4>
<strong> <font size=4>TA </font></strong>: Data Structure, The Theory of Computation
</font>
</p>
</td>
</tr>
</tbody></table>
<table style="width:100%;border:0px;border-spacing:0px;border-collapse:separate;margin-right:auto;margin-left:auto;"><tbody>
<tr>
<td style="padding:0px">
<br>
<p style="text-align:right;font-size:small;">
<a href="https://jonbarron.info/">This</a> guy is good at website design.
</p>
</td>
</tr>
</tbody></table>
</td>
</tr>
</table>
</body>
</html>