-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path1_Modeling.R
186 lines (159 loc) · 7.59 KB
/
1_Modeling.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
################################################################################
## R-Script - 1_Modeling.R ##
## author: Javier Lopatin ##
## mail: javierlopatin@gmail.com ##
## ##
## Manuscript: Example scripts of the modeling approach for the Acacia flight ##
## ##
## description: MaxEnt classification storing of bootstrap distributions ##
## ##
################################################################################
# set java number of cores to use
options(java.parameters = "-Xmx6g" )
# load require libraries
require(maptools)
require(raster)
require(rJava)
require(sp)
require(dismo)
require(rgdal)
require(rgeos)
require(doParallel)
# environment
setwd("E:/Somedirection")
#################################################
### Functions
loadAll <- function(prefix){
## load require shapefiles and rasters
# load training areas (polygons)
studyarea = readOGR(paste0("1_reference/", prefix, "_AOI.shp"))
studyarea = gBuffer(studyarea, byid=TRUE, width=0)
treeallpoly = readOGR(paste0("1_reference/", prefix, "_canopy.shp"))
treeallpoly = gBuffer(treeallpoly, byid=TRUE, width=0)
shadows = readOGR(paste0("1_reference/", prefix, "_shadows.shp"))
# load raster data
texture = stack(paste0("raw/", prefix, "/texture.tif"))
hyper = stack(paste0("raw/", prefix, "/hyperspectral.tif"))
rgb = stack(paste0("raw/", prefix, "/rgb.tif"))[[1:3]]
structure = stack(paste0("raw/", prefix, "/structure.tif"))
#stack(hyper, structure)
# predict raster
texture_pred = stack(paste0("raw/", prefix, "/texture_clip.tif"))
hyper_pred = stack(paste0("raw/", prefix, "/hyperspectral_clip.tif"))
rgb_pred = stack(paste0("raw/", prefix, "/rgb_clip.tif"))[[1:3]]
structure_pred = stack(paste0("raw/", prefix, "/structure_clip.tif"))
texture_pred <- resample(texture_pred, rgb_pred)
}
runMaxent <- function(raster, pred_raster, outname){
# Run maxent classifier with and without resuction of variance in the presence data
# Evaluations are carried using all, only sunny and only shadowed presence data
# Model results are saved as RData in a "Results" folder, while raster predictions are
# returned as function outputs
names(pred_raster) = names(raster)
# unique loop name
### fit overall model
fit <- maxent(x=raster, p = train_pos, a = train_back, removeDuplicates=F)
# eveluate results
eval <- evaluate(p=test_pos, a=test_back, model = fit, x=raster)
eval_sunny <- evaluate(p=test_pos[-which(over(test_pos, shadows) == 0)], a=test_back, model = fit, x=raster)
eval_shadow <- evaluate(p=test_pos[which(over(test_pos, shadows) == 0)], a=test_back, model = fit, x=raster)
save(fit, file = paste0("results/models/all/", outname, "_", i, ".RData"))
save(eval, file = paste0("results/eval/all/", outname, "_", i, ".RData"))
save(eval_sunny, file = paste0("results/eval/all/", outname, "_sunny_", i, ".RData"))
save(eval_shadow, file = paste0("results/eval/all/", outname, "_shadows_", i, ".RData"))
beginCluster(6)
pred <- clusterR(pred_raster, raster::predict, args = list(model = fit))
endCluster()
### fit sunny model
# select only sunny possitive points
fit2 <- maxent(x=raster, p = train_pos[-which(over(train_pos, shadows) == 0)], a = train_back, removeDuplicates=F)
# eveluate results
eval2 <- evaluate(p=test_pos, a=test_back, model = fit2, x=raster)
eval_sunny2 <- evaluate(p=test_pos[-which(over(test_pos, shadows) == 0)], a=test_back, model = fit2, x=raster)
eval_shadow2 <- evaluate(p=test_pos[which(over(test_pos, shadows) == 0)], a=test_back, model = fit2, x=raster)
save(fit2, file = paste0("results/models/sunny/", outname, "_", i, ".RData"))
save(eval2, file = paste0("results/eval/sunny/", outname, "_", i, ".RData"))
save(eval_sunny2, file = paste0("results/eval/sunny/", outname, "_sunny_", i, ".RData"))
save(eval_shadow2, file = paste0("results/eval/sunny/", outname, "_shadows_", i, ".RData"))
beginCluster(6)
pred2 <- clusterR(pred_raster, raster::predict, args = list(model = fit2))
endCluster()
out <- list(pred, pred2)
out
}
#############################################
### Modeling
##############
### Acacia ###
##############
prefix = "acacia_f1"
# load require data
loadAll(prefix)
# Create possitive and background random points
background = spsample(studyarea, 2000, type="random")
positive = spsample(treeallpoly, 500, type="random")
# variable selection
# run models using all variables
# RGB
rgb_model <- maxent(x=rgb, p = positive, a = background, removeDuplicates=F)
rgb_model@results[ grep("permutation", row.names(as.data.frame(rgb_model@results))), ]
cor(extract(rgb, positive))
rgb_best = c(2,3)
# hyperspectral
hyper_model <- maxent(x=hyper, p = positive, a = background, removeDuplicates=F)
imp = hyper_model@results[ grep("permutation", row.names(as.data.frame(hyper_model@results))), ]
imp[which(imp > 2)]
cor(extract(hyper[[c(1,2,10,11,24,31)]], positive))
hyper_best = c(1,24)
hyper_model2 <- maxent(x=hyper[[hyper_best]], p = positive, a = background, removeDuplicates=F)
# texture
text_model <- maxent(x=texture, p = positive, a = background, removeDuplicates=F)
imp = text_model@results[ grep("permutation", row.names(as.data.frame(text_model@results))), ]
imp[which(imp > 3)]
cor(extract(texture[[c(30,36,37,38,39)]], positive))
text_best = c(30,36,37,38,39)
textr_model2 <- maxent(x=texture[[text_best]], p = positive, a = background, removeDuplicates=F)
# structure
structure_model <- maxent(x=structure, p = positive, a = background, removeDuplicates=F)
imp = structure_model@results[ grep("permutation", row.names(as.data.frame(structure_model@results))), ]
imp[which(imp > 3)]
cor(extract(structure[[c(1,4,6,7)]], positive))
struct_best = c(1,4,6,7)
struct_model2 <- maxent(x=structure[[struct_best]], p = positive, a = background, removeDuplicates=F)
save.image("acacia.RData")
# run all combinations
raster_list <- list(rgb, texture, structure, hyper, stack(structure, texture), stack(structure, rgb),
stack(structure, hyper), stack(texture, rgb), stack(texture, hyper),
stack(structure, texture, rgb), stack(structure, texture, hyper))
names(raster_list) <- c("rgb", "texture", "struct", "hyper", "strcttext", "structrgb",
"structhyper", "textrgb", "texthyper",
"structextrgb", "structexthyper")
# Fit models
registerDoParallel(6)
# prepare storing lists for predicted rasters
pred <- list()
pred2 <- list()
# Bootstrapping
for (i in 1:100){
print(i)
# create random training points and split them according to the tree/nontree areas/polygons
idx_pos = sample(500, 500, replace = T)
idx_back = sample(2000, 2000, replace = T)
# sample points
train_pos <- positive[idx_pos]
train_back <- background[idx_back]
test_pos <- positive[-idx_pos]
test_back <- background[-idx_back]
# loop throught datasets sharing the same training/validation samples
for (j in 1:length(raster_list)){
# unique loop name
outname = paste0(names(raster_list[j]), "_", prefix)
pred_rgb <- runMaxent(raster_list[[j]], raster_pred[[j]], outname)
pred[[i]] <- pred_rgb[[1]]
pred2[[i]] <- pred_rgb[[2]]
pred_out <- list(pred, pred2)
save(pred_out, file = paste0("results/preds/", outname, ".RData"))
print(paste0("Done ", outname, "!!!"))
}
}
stopImplicitCluster()