Skip to content

Latest commit

 

History

History
26 lines (23 loc) · 2.13 KB

Fixed-Lag-Smoothing.md

File metadata and controls

26 lines (23 loc) · 2.13 KB

FIXED-LAG-SMOOTHING

AIMA3e

function FIXED-LAG-SMOOTHING(et, hmm, d) returns a distribution over Xtd
inputs: et, the current evidence for time step t
     hmm, a hidden Markov model with S × S transition matrix T
     d, the length of the lag for smoothing
persistent: t, the current time, initially 1
      f, the forward message P(Xt | e1:t), initially hmm.PRIOR
      B, the d-step backward transformation matrix, initially the identity matrix
      et−d:t, double-ended list of evidence from td to t, initially empty
local variables: Otd, Ot, diagonal matrices containing the sensor model information

 add et to the end of et−d:t
Ot ← diagonal matrix containing P(et | Xt)
if t > d then
   f ← FORWARD(f, et)
    remove etd−1 from the beginning of et−d:t
   Otd ← diagonal matrix containing P(et−d | Xt−d)
   BOtd−1T−1 BTOt
else BBTOt
tt + 1
if t > d then return NORMALIZE(f × B1) else return null


Figure ?? An algorithm for smoothing with a fixed time lag of d steps, implemented as an oline algorithm that outputs the new smoothed estimate given the observation for a new time step. Notice that the final output NORMALIZE(f × B1) is just α f × b, by Equation (??).