-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUncertainty, Contours, Advanced Color Mapping, and Some Extras
157 lines (114 loc) · 3.86 KB
/
Uncertainty, Contours, Advanced Color Mapping, and Some Extras
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Uncertainty
## Quantile Dot Plot
library(ggplot2)
library(dplyr)
mu <- 1.02
sd <- 0.9
binwidth <- 0.31
df_q <- data.frame(x = qnorm(ppoints(50), mu, sd)) %>%
mutate(type = ifelse(x <= 0, "A", "B"))
x_vals <- seq(min(df_q$x), max(df_q$x), length.out = 100)
y_vals <- dnorm(x_vals, mean = mu, sd = sd)
df_norm <- data.frame(x = x_vals, y = y_vals)
ggplot(df_q, aes(x, fill = type)) +
geom_vline(xintercept = 0, linetype = 2, color = "gray50") +
geom_line(data = df_norm, aes(x, 1.92 * y), inherit.aes = FALSE) +
geom_dotplot(binwidth = binwidth) +
scale_fill_manual(values = c(A = "#f8f1a9", B = "#b1daf4"), guide = "none")
binwidth <- 0.31 * 2.1
df_q <- data.frame(x = qnorm(ppoints(10), mu, sd)) %>%
mutate(type = ifelse(x <= 0, "A", "B"))
ggplot(df_q, aes(x, fill = type)) +
geom_vline(xintercept = 0, linetype = 2, color = "gray50") +
geom_line(data = df_norm, aes(x, 1.92 * y), inherit.aes = FALSE) +
geom_dotplot(binwidth = binwidth) +
scale_fill_manual(values = c(A = "#f8f1a9", B = "#b1daf4"), guide = "none")
## Curve Fit
plt <- ggplot(ToothGrowth, aes(dose, len)) +
geom_point()
plt +
geom_smooth()
plt +
geom_smooth(method = lm)
plt +
geom_smooth(method = lm, level = 0.99)
plt +
geom_smooth(method = lm, formula = y ~ poly(x, 2))
## Error Bars
library(Rmisc)
tgc <- summarySE(ToothGrowth, measurevar = "len", groupvars = c("supp", "dose"))
head(tgc)
plt <- ggplot(tgc, aes(x = dose, y = len, colour = supp))
plt +
geom_line() +
geom_point() +
geom_errorbar(aes(ymin = len - se, ymax = len + se), width = .1)
pd <- position_dodge(0.1)
plt + geom_errorbar(aes(ymin = len - se, ymax = len + se), width = .1, position = pd) +
geom_line(position = pd) +
geom_point(position = pd)
plt +
geom_errorbar(aes(ymin = len-ci, ymax = len+ci), width = .1, position = pd) +
geom_line(position = pd) +
geom_point(position = pd)
# Contours
head(faithful)
ggplot(faithful, aes(eruptions)) +
geom_density()
ggplot(faithful, aes(waiting)) +
geom_density()
ggplot(faithful, aes(waiting)) +
geom_density() +
geom_density(aes(eruptions))
plt <- ggplot(faithful, aes(x = eruptions, y = waiting))
plt +
stat_density2d()
plt +
stat_density2d(aes(colour = ..level..)) +
geom_point()
plt +
stat_density2d(aes(fill = ..density..), geom = "raster", contour = FALSE)
plt +
geom_point() +
stat_density2d(aes(alpha = ..density..), geom = "tile", contour = FALSE)
plt +
stat_density2d(aes(fill = ..density..), geom = "raster", contour = FALSE, h = c(.5, 5))
plt +
stat_bin2d(aes(fill = ..density..))
# Advanced Color Mapping
pal = c("#f0f9e8", "#bae4bc", "#7bccc4", "#43a2ca", "#0868ac")
d = data.frame(v = rexp(1000))
quarts = quantile(mtcars$hp, probs = seq(0, 1, .25), names = FALSE)
p <- ggplot(d, aes(v)) +
geom_histogram(aes(fill = ..count..), bins = 30)
p +
scale_fill_distiller(palette = "GnBu", direction = 1)
library(scales)
p +
scale_fill_gradientn(colors = pal, values = rescale(quarts, to = c(0, 1)))
# Some Extras
## Multiple Plots
library(gridExtra)
p1 <- ggplot(diamonds, aes(factor(color), price)) +
geom_boxplot()
p2 <- ggplot(diamonds, aes(depth, price)) +
geom_density_2d()
p3 <- ggplot(diamonds, aes(factor(clarity), price)) +
geom_violin()
grid.arrange(p1, p2, p3, ncol = 3)
grid.arrange(p1, p2, p3, nrow = 3)
grid.arrange(p1, p2, p3, nrow = 2, ncol = 2)
## Animation
library(gganimate)
library(gifski)
library(gapminder)
p <- ggplot(gapminder, aes(x = gdpPercap, y = lifeExp, size = pop, colour = country)) +
geom_point(show.legend = FALSE, alpha = 0.7) +
scale_color_viridis_d() +
scale_size(range = c(2, 12)) +
scale_x_log10() +
labs(x = "GDP per capita", y = "Life expectancy")
p
p +
transition_time(year) +
labs(title = "Year: {frame_time}")