-
Notifications
You must be signed in to change notification settings - Fork 5.1k
/
Copy pathhorse_adaboost.py
147 lines (137 loc) · 5.59 KB
/
horse_adaboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*-coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
"""
Author:
Jack Cui
Blog:
http://blog.csdn.net/c406495762
Zhihu:
https://www.zhihu.com/people/Jack--Cui/
Modify:
2017-10-10
"""
def loadDataSet(fileName):
numFeat = len((open(fileName).readline().split('\t')))
dataMat = []; labelMat = []
fr = open(fileName)
for line in fr.readlines():
lineArr = []
curLine = line.strip().split('\t')
for i in range(numFeat - 1):
lineArr.append(float(curLine[i]))
dataMat.append(lineArr)
labelMat.append(float(curLine[-1]))
return dataMat, labelMat
def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):
"""
单层决策树分类函数
Parameters:
dataMatrix - 数据矩阵
dimen - 第dimen列,也就是第几个特征
threshVal - 阈值
threshIneq - 标志
Returns:
retArray - 分类结果
"""
retArray = np.ones((np.shape(dataMatrix)[0],1)) #初始化retArray为1
if threshIneq == 'lt':
retArray[dataMatrix[:,dimen] <= threshVal] = -1.0 #如果小于阈值,则赋值为-1
else:
retArray[dataMatrix[:,dimen] > threshVal] = -1.0 #如果大于阈值,则赋值为-1
return retArray
def buildStump(dataArr,classLabels,D):
"""
找到数据集上最佳的单层决策树
Parameters:
dataArr - 数据矩阵
classLabels - 数据标签
D - 样本权重
Returns:
bestStump - 最佳单层决策树信息
minError - 最小误差
bestClasEst - 最佳的分类结果
"""
dataMatrix = np.mat(dataArr); labelMat = np.mat(classLabels).T
m,n = np.shape(dataMatrix)
numSteps = 10.0; bestStump = {}; bestClasEst = np.mat(np.zeros((m,1)))
minError = float('inf') #最小误差初始化为正无穷大
for i in range(n): #遍历所有特征
rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max() #找到特征中最小的值和最大值
stepSize = (rangeMax - rangeMin) / numSteps #计算步长
for j in range(-1, int(numSteps) + 1):
for inequal in ['lt', 'gt']: #大于和小于的情况,均遍历。lt:less than,gt:greater than
threshVal = (rangeMin + float(j) * stepSize) #计算阈值
predictedVals = stumpClassify(dataMatrix, i, threshVal, inequal)#计算分类结果
errArr = np.mat(np.ones((m,1))) #初始化误差矩阵
errArr[predictedVals == labelMat] = 0 #分类正确的,赋值为0
weightedError = D.T * errArr #计算误差
# print("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError))
if weightedError < minError: #找到误差最小的分类方式
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump, minError, bestClasEst
def adaBoostTrainDS(dataArr, classLabels, numIt = 40):
"""
使用AdaBoost算法提升弱分类器性能
Parameters:
dataArr - 数据矩阵
classLabels - 数据标签
numIt - 最大迭代次数
Returns:
weakClassArr - 训练好的分类器
aggClassEst - 类别估计累计值
"""
weakClassArr = []
m = np.shape(dataArr)[0]
D = np.mat(np.ones((m, 1)) / m) #初始化权重
aggClassEst = np.mat(np.zeros((m,1)))
for i in range(numIt):
bestStump, error, classEst = buildStump(dataArr, classLabels, D) #构建单层决策树
# print("D:",D.T)
alpha = float(0.5 * np.log((1.0 - error) / max(error, 1e-16))) #计算弱学习算法权重alpha,使error不等于0,因为分母不能为0
bestStump['alpha'] = alpha #存储弱学习算法权重
weakClassArr.append(bestStump) #存储单层决策树
# print("classEst: ", classEst.T)
expon = np.multiply(-1 * alpha * np.mat(classLabels).T, classEst) #计算e的指数项
D = np.multiply(D, np.exp(expon))
D = D / D.sum() #根据样本权重公式,更新样本权重
#计算AdaBoost误差,当误差为0的时候,退出循环
aggClassEst += alpha * classEst #计算类别估计累计值
# print("aggClassEst: ", aggClassEst.T)
aggErrors = np.multiply(np.sign(aggClassEst) != np.mat(classLabels).T, np.ones((m,1))) #计算误差
errorRate = aggErrors.sum() / m
# print("total error: ", errorRate)
if errorRate == 0.0: break #误差为0,退出循环
return weakClassArr, aggClassEst
def adaClassify(datToClass,classifierArr):
"""
AdaBoost分类函数
Parameters:
datToClass - 待分类样例
classifierArr - 训练好的分类器
Returns:
分类结果
"""
dataMatrix = np.mat(datToClass)
m = np.shape(dataMatrix)[0]
aggClassEst = np.mat(np.zeros((m,1)))
for i in range(len(classifierArr)): #遍历所有分类器,进行分类
classEst = stumpClassify(dataMatrix, classifierArr[i]['dim'], classifierArr[i]['thresh'], classifierArr[i]['ineq'])
aggClassEst += classifierArr[i]['alpha'] * classEst
# print(aggClassEst)
return np.sign(aggClassEst)
if __name__ == '__main__':
dataArr, LabelArr = loadDataSet('horseColicTraining2.txt')
weakClassArr, aggClassEst = adaBoostTrainDS(dataArr, LabelArr)
testArr, testLabelArr = loadDataSet('horseColicTest2.txt')
print(weakClassArr)
predictions = adaClassify(dataArr, weakClassArr)
errArr = np.mat(np.ones((len(dataArr), 1)))
print('训练集的错误率:%.3f%%' % float(errArr[predictions != np.mat(LabelArr).T].sum() / len(dataArr) * 100))
predictions = adaClassify(testArr, weakClassArr)
errArr = np.mat(np.ones((len(testArr), 1)))
print('测试集的错误率:%.3f%%' % float(errArr[predictions != np.mat(testLabelArr).T].sum() / len(testArr) * 100))