-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
248 lines (204 loc) · 7.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import shutil
from datetime import datetime
import torch
import torch.optim as optim
import wandb
from absl import logging
from torch.utils.tensorboard import SummaryWriter
def get_optimizier(opt_name, lr, params):
if opt_name == "adam":
opt = optim.Adam(params, lr=lr, weight_decay=5e-4)
elif opt_name == "sgd":
opt = optim.SGD(params, lr=lr, weight_decay=5e-4, momentum=0.9)
elif opt_name == "rmsprop":
opt = optim.RMSprop(params, lr=lr, weight_decay=5e-4, momentum=0.9)
else:
raise NotImplementedError
return opt
def get_scheduler(scheduler_name, opt, train_steps, milestones=[0.4, 0.7, 0.9], gamma=0.3):
if scheduler_name == "step_lr":
milestones = [int(train_steps * v) for v in milestones]
scheduler = optim.lr_scheduler.MultiStepLR(opt, milestones=milestones, gamma=gamma)
elif scheduler_name == "cosine_lr":
scheduler = optim.lr_scheduler.CosineAnnealingLR(opt, train_steps)
else:
raise NotImplementedError
return scheduler
class InfIterator:
def __init__(self, iterable):
self.iterable = iterable
self.iterator = iter(self.iterable)
def __next__(self):
try:
return next(self.iterator)
except StopIteration:
self.iterator = iter(self.iterable)
return next(self.iterator)
def check_args(FLAGS):
ignore = [
"logtostderr",
"alsologtostderr",
"log_dir",
"v",
"verbosity",
"stderrthreshold",
"showprefixforinfo",
"run_with_pdb",
"pdb_post_mortem",
"run_with_profiling",
"profile_file",
"use_cprofile_for_profiling",
"only_check_args",
"?",
"help",
"helpshort",
"helpfull",
"helpxml",
]
for name, value in FLAGS.flag_values_dict().items():
if name not in ignore:
print(f"{name:>15} : {value}")
print("Is this correct? (y/n)")
ret = input()
if ret.lower() != "y":
exit(0)
def backup_code(
backup_dir,
ignore_list={".gitignore", ".ipynb_checkpoints", ".vscode", "__pycache__", "checkpoint", "data", "runs", "wandb"},
):
shutil.copytree(
os.path.abspath(os.path.curdir), backup_dir, ignore=lambda src, names: ignore_list,
)
class Logger:
def __init__(
self,
exp_name,
exp_suffix="",
log_dir=None,
save_dir=None,
print_every=100,
save_every=100,
initial_step=0,
total_step=0,
print_to_stdout=True,
use_wandb=False,
wnadb_project_name=None,
wandb_tags=[],
wandb_config=None,
):
if log_dir is not None:
self.log_dir = os.path.join(log_dir, exp_name, exp_suffix)
os.makedirs(self.log_dir, exist_ok=True)
else:
self.log_dir = None
assert use_wandb, "'log_dir' argument must be given or 'use_wandb' argument must be True."
if save_dir is not None:
self.save_dir = os.path.join(save_dir, exp_name, exp_suffix)
os.makedirs(self.save_dir, exist_ok=True)
else:
self.save_dir = None
self.print_every = print_every
self.save_every = save_every
self.step_count = initial_step
self.total_step = total_step
self.print_to_stdout = print_to_stdout
self.use_wandb = use_wandb
self.writer = None
self.start_time = None
self.groups = dict()
self.models_to_save = dict()
if self.use_wandb:
exp_suffix = "_".join(exp_suffix.split("/")[:-1])
wandb.init(project=wnadb_project_name, name=exp_name + "_" + exp_suffix, tags=wandb_tags, reinit=True)
wandb.config.update(wandb_config)
def register_model_to_save(self, model, name):
assert name not in self.models_to_save.keys(), "Name is already registered."
self.models_to_save[name] = model
def step(self):
self.step_count += 1
if self.step_count % self.print_every == 0:
if self.print_to_stdout:
self.print_log(self.step_count, self.total_step, elapsed_time=datetime.now() - self.start_time)
self.write_log(self.step_count)
if self.step_count % self.save_every == 0:
self.save_models()
def meter(self, group_name, log_name, value):
if group_name not in self.groups.keys():
self.groups[group_name] = dict()
if log_name not in self.groups[group_name].keys():
self.groups[group_name][log_name] = Accumulator()
self.groups[group_name][log_name].update_state(value)
def reset_state(self):
for _, group in self.groups.items():
for _, log in group.items():
log.reset_state()
def print_log(self, step, total_step, elapsed_time=None):
print(f"[Step {step:5d}/{total_step}]", end=" ")
for name, group in self.groups.items():
print(f"({name})", end=" ")
for log_name, log in group.items():
if "acc" in log_name.lower():
print(f"{log_name} {log.result() * 100:.2f}", end=" | ")
else:
print(f"{log_name} {log.result():.4f}", end=" | ")
if elapsed_time is not None:
print(f"(Elapsed time) {elapsed_time}")
else:
print()
def write_log(self, step):
if self.use_wandb:
log_dict = {}
for group_name, group in self.groups.items():
for log_name, log in group.items():
log_dict["{}/{}".format(log_name, group_name)] = log.result()
wandb.log(log_dict, step=step)
else:
if self.writer is None:
self.writer = SummaryWriter(self.log_dir)
for group_name, group in self.groups.items():
for log_name, log in group.items():
self.writer.add_scalar("{}/{}".format(log_name, group_name), log.result(), step)
self.writer.flush()
self.reset_state()
def write_log_individually(self, name, value, step):
if self.use_wandb:
wandb.log({name: value}, step=step)
else:
self.writer.add_scalar(name, value, step=step)
def save_models(self, suffix=None):
if self.save_dir is None:
return
for name, model in self.models_to_save.items():
if suffix:
name += f"_{suffix}"
torch.save(model.state_dict(), os.path.join(self.save_dir, f"{name}.pth"))
if self.print_to_stdout:
logging.info(f"Model is saved to {self.save_dir}")
def start(self):
if self.print_to_stdout:
logging.info("Training starts!")
self.save_models("init")
self.start_time = datetime.now()
def finish(self):
if self.step_count % self.save_every != 0:
self.save_models(self.step_count)
if self.print_to_stdout:
logging.info("Training is finished!")
if self.use_wandb:
wandb.join()
class Accumulator:
def __init__(self):
self.data = 0
self.num_data = 0
def reset_state(self):
self.data = 0
self.num_data = 0
def update_state(self, tensor):
with torch.no_grad():
self.data += tensor
self.num_data += 1
def result(self):
if self.num_data == 0:
return 0
return (1.0 * self.data / self.num_data).item()