-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmml.lar.1011
1009 lines (1009 loc) · 8.38 KB
/
mml.lar.1011
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
xboole_0
boole
xboole_1
enumset1
zfmisc_1
subset_1
subset
setfam_1
relat_1
funct_1
grfunc_1
relat_2
ordinal1
wellord1
relset_1
partfun1
mcart_1
wellord2
funct_2
binop_1
domain_1
funct_3
funcop_1
funct_4
numerals
ordinal2
ordinal3
wellset1
multop_1
mcart_2
schems_1
sysrel
gate_1
mcart_3
gate_2
gate_3
gate_4
gate_5
finset_1
finsub_1
orders_1
setwiseo
fraenkel
card_1
funct_5
arytm_3
arytm_2
arytm_1
numbers
arytm_0
xcmplx_0
arithm
xxreal_0
xreal_0
real
xcmplx_1
xreal_1
axioms
real_1
square_1
nat_1
int_1
rat_1
membered
valued_0
real_2
complex1
absvalue
int_2
nat_d
binop_2
xxreal_1
card_2
classes1
supinf_1
quin_1
card_3
realset1
partfun2
classes2
finseq_1
recdef_1
valued_1
seq_1
xboolean
eqrel_1
seq_2
margrel1
toler_1
finseq_2
trees_1
seqm_3
seq_4
ordinal4
finseqop
rcomp_1
finseq_3
rcomp_2
finseq_4
finsop_1
comseq_1
setwop_2
rfunct_1
comseq_2
rvsum_1
rfunct_2
cfunct_1
fcont_1
fcont_2
fdiff_1
newton
rolle
prepower
power
polyeq_1
pboole
scheme1
series_1
comseq_3
cfcont_1
rpr_1
funct_6
card_4
supinf_2
trees_2
trees_a
rfinseq
card_5
pre_ff
trees_3
partit1
trees_4
card_fil
binarith
finseq_5
pre_circ
finseq_6
mboolean
rewrite1
wsierp_1
glib_000
pzfmisc1
genealg1
binari_2
trees_9
mssubfam
relset_2
funct_7
recdef_2
prob_1
prob_2
limfunc1
limfunc2
seqfunc
limfunc3
fcont_3
limfunc4
l_hospit
fdiff_2
fdiff_3
measure1
measure2
measure3
measure4
rfunct_3
measure5
rearran1
measure6
extreal1
measure7
rfunct_4
mesfunc1
extreal2
sin_cos
mesfunc2
sin_cos2
sin_cos4
asympt_0
sin_cos3
sin_cos5
comptrig
complex2
polyeq_3
sin_cos6
euler_1
euler_2
asympt_1
polyeq_2
polyeq_4
series_3
series_5
series_4
quaterni
afinsq_1
abian
nat_2
pepin
irrat_1
taylor_1
holder_1
fdiff_5
fdiff_4
sin_cos7
fdiff_6
sin_cos8
fdiff_7
bvfunc_1
fdiff_8
binari_5
bvfunc_2
taylor_2
catalan1
pythtrip
series_2
fib_num
stirl2_1
partit_2
bvfunc_3
bvfunc_4
bvfunc_5
bvfunc_6
bvfunc_7
bvfunc_8
bvfunc_9
bvfunc10
bvfunc11
bvfunc13
bvfunc14
bvfunc24
bvfunc25
bvfunc26
finseq_7
prgcor_1
fdiff_9
arrow
zf_lang
zf_model
zf_colla
zfmodel1
zf_lang1
zf_refle
zfrefle1
qc_lang1
qc_lang2
qc_lang3
cqc_lang
cqc_the1
valuat_1
zfmodel2
lukasi_1
procal_1
zf_fund1
intpro_1
cqc_the2
zf_fund2
hilbert1
cqc_sim1
modal_1
cqc_the3
card_lar
qc_lang4
substut1
sublemma
substut2
calcul_1
calcul_2
henmodel
goedelcp
real_3
fdiff_10
struct_0
algstr_0
incsp_1
pre_topc
orders_2
graph_1
cat_1
net_1
lattices
tops_1
connsp_1
tops_2
rlvect_1
rlsub_1
group_1
vectsp_1
complfld
parsp_1
symsp_1
ortsp_1
compts_1
rlsub_2
midsp_1
funcsdom
vectsp_2
filter_0
lattice2
realset2
robbins1
qmax_1
parsp_2
rlvect_2
analoaf
metric_1
diraf
aff_1
aff_2
aff_3
collsp
pasch
real_lat
tdgroup
transgeo
cat_2
translac
anproj_1
anproj_2
algstr_1
rlvect_3
vectsp_3
group_2
vectsp_4
vectsp_5
vectsp_6
vectsp_7
analmetr
group_3
projdes1
group_4
connsp_2
normsp_1
algseq_1
homothet
afvect0
complsp1
realset3
algstr_2
metric_3
sub_metr
metric_2
hessenbe
incproj
afvect01
normform
o_ring_1
algstr_3
projred1
mod_1
lmod_5
rmod_2
rmod_3
rmod_4
rmod_5
geomtrap
projred2
conaffm
conmetr
papdesaf
pardepap
semi_af1
aff_4
afproj
heyting1
prelamb
oppcat_1
euclmetr
filter_1
conmetr1
nat_lat
group_5
nattra_1
matrix_1
pcomps_1
midsp_2
metric_4
ali2
bhsp_1
bhsp_2
bhsp_3
rsspace
ens_1
borsuk_1
tbsp_1
grcat_1
group_6
mod_2
mod_3
analort
rusub_1
rusub_2
rlvect_4
rusub_3
rlvect_5
rusub_4
rusub_5
convex1
urysohn1
lattice3
yellow_0
tdlat_1
tdlat_2
tsep_1
tdlat_3
tmap_1
tops_3
tex_1
tex_2
tex_4
t_0topsp
tsp_1
matrix_2
fvsum_1
prvect_1
cantor_1
gr_cy_1
monoid_0
euclid
toprns_1
topmetr
heine
topmetr2
topreal1
isocat_1
ringcat1
modcat_1
metric_6
topreal2
ff_siec
e_siec
commacat
lang1
bhsp_4
cat_3
midsp_3
gr_cy_2
isocat_2
lmod_6
dirort
mod_4
pcomps_2
treal_1
topreal3
topreal4
goboard1
goboard2
goboard3
goboard4
sppol_1
jordan1
cat_4
vfunct_1
tsep_2
petri
fin_topo
unialg_1
coh_sp
monoid_1
lmod_7
matrix_3
unialg_2
hahnban
hahnban1
lattice4
openlatt
lopclset
boolmark
dtconstr
pralg_1
alg_1
freealg
tex_3
bintree1
boolealg
msualg_1
autgroup
msualg_2
pralg_2
msualg_3
msafree
msualg_4
quantal1
tsp_2
projpl_1
sgraph1
grsolv_1
filter_2
cat_5
fsm_1
sppol_2
goboard5
goboard6
goboard7
pscomp_1
msaterm
decomp_1
msafree1
msuhom_1
msafree2
autalg_1
circuit1
altcat_1
extens_1
circuit2
circcomb
graph_2
vectsp_8
latsubgr
unialg_3
index_1
matrlin
t_1topsp
weierstr
borsuk_2
facirc_1
cohsp_1
pua2mss1
vectsp_9
endalg
goboard8
triang_1
goboard9
msualg_5
altcat_2
orders_3
connsp_3
closure1
closure2
msualg_6
msualg_7
msscyc_1
msualg_8
msscyc_2
functor0
functor1
pralg_3
gobrd10
msalimit
msualg_9
msinst_1
gobrd11
gobrd12
waybel_0
knaster
yellow_1
yellow_2
waybel_1
yellow_3
yellow_4
waybel_2
waybel_3
waybel_4
twoscomp
yellow_5
yellow_6
waybel_5
yellow_7
waybel_6
waybel_7
waybel_8
jordan3
waybel_9
instalg1
yellow_8
waybel10
catalg_1
waybel11
waybel12
altcat_3
wellfnd1
waybel13
jordan4
substlat
equation
msafree3
functor2
yoneda_1
gcd_1
birkhoff
closure3
graph_3
waybel14
jordan5a
jordan5b
jordan5c
altcat_4
waybel15
jordan2b
topreal5
lattice5
uniform1
sprect_1
sprect_2
jordan6
functor3
waybel16
waybel17
binari_3
bintree2
yellow_9
yellow10
yellow11
waybel18
yellow12
quofield
frechet
jordan5d
group_7
jordan7
waybel19
waybel20
waybel21
waybel22
graph_4
jgraph_1
idea_1
topgrp_1
mssublat
conlat_1
taxonom1
taxonom2
sprect_3
vectmetr
yellow13
waybel23
heyting2
jordan2c
euclid_2
revrot_1
sprect_4
int_3
frechet2
borsuk_3
topreal6
jgraph_2
jgraph_3
jgraph_4
jgraph_5
topmetr3
topreal7
fscirc_1
integra1
integra2
urysohn2
jct_misc
borsuk_4
borsuk_5
topgen_2
hilbert2
hilbert3
jordan1k
hausdorf
jordan16
jordan17
jordan20
jordan21
jgraph_6
jgraph_7
borsuk_6
urysohn3
topalg_1
topalg_2
topalg_3
topalg_4
topreal9
topreala
toprealb
rcomp_3
partfun3
topalg_5
brouwer
tietze
jgraph_8
jordan24
jordan
jordan8
gobrd13
gobrd14
lattice6
waybel24
yellow14
topreal8
jordan9
yellow15
jordan10
waybel25
conlat_2
radix_1
yellow16
algspec1
polynom1
waybel26
waybel27
integra3
waybel28
waybel29
waybel30
waybel31
lattice7
integra4
radix_2
integra5
polynom2
polynom3
fuzzy_1
fuzzy_2
yellow17
waybel32
pencil_1
polynom4
orders_4
lattice8
heyting3
polynom5
jordan1a
jordan1b
fintopo2
jordan1c
sprect_5
jordan1d
binom
ideal_1
hilbasis
dynkin
yellow18
polyalg1
circtrm1
fuzzy_4
comput_1
turing_1
yellow19
waybel33
yellow20
yellow21
waybel34
jordan1e
polynom6
pencil_2
jordan1f
jordan1g
jordan1h
polynom7
fsm_2
jordan1i
dickson
bagorder
circcmb2
facirc_2
jordan1j
jordan11
jordan12
jordan13
jordan14
circcmb3
jordan15
jordan18
osalg_1
osalg_2
osalg_3
osalg_4
osafree
armstrng
vectsp10
bilinear
hermitan
necklace
termord
polyred
pnproc_1
radix_3
radix_4
graph_5
chain_1
bhsp_5
binari_4
waybel35
oposet_1
bhsp_6
fscirc_2
graphsp
rsspace2
convex2
bhsp_7
euclid_3
neckla_2
groeb_1
groeb_2
kurato_1
convex3
robbins2
convfun1
abcmiz_0
euclid_4
rsspace3
euclid_5
matrix_4
lfuzzy_0
kurato_2
jordan_a
jordan19
rfinseq2
radix_5
radix_6
lfuzzy_1
roughs_1
lopban_1
uproots
uniroots
weddwitt
rsspace4
clvect_1
lopban_2
csspace
fintopo3
lopban_3
neckla_3
clvect_2
lopban_4
nat_3
csspace2
csspace3
clopban1
csspace4
finseq_8
clvect_3
cfuncdom
clopban2
nfcont_1
nfcont_2
clopban3
clopban4
fib_num2
hallmar1
ndiff_1
fib_num3
latsum_1
nagata_1
group_8
sheffer1
sheffer2
ndiff_2
prgcor_2
fintopo4
nagata_2
vfunct_2
ncfcont1
lp_space
mesfunc3
jordan22
ncfcont2
rltopsp1
pencil_3
pencil_4
topgen_1
groeb_3
matrix_5
topgen_3
robbins3
mathmorp
jordan23
setlim_1
isomichi
complsp2
rinfsup1
euclidlp
card_fin
setlim_2
fintopo5
prob_3
filerec1
circled1
topgen_4
mesfunc4
matrixc1
topgen_5
prob_4
matrix_6
gfacirc1
ring_1
real_ns1
matrix_7
matrix_8
matrix_9
matrixr1
glib_001
glib_002
glib_003
glib_004
glib_005
moebius1
nat_4
mesfunc5
chord
fintopo6
matrprob
diff_1
polynom8
matrix10
hurwitz
mesfunc6
catalan2
modelc_1
lexbfs
integra6
numeral1
normsp_2
bcialg_1
flang_1
matrix11
combgras
group_9
flang_2
integra7
pdiff_1
prvect_2
aofa_000
entropy1
rewrite2
matrixr2
ranknull
laplace
matrix12
group_10
compact1
bcialg_2
int_4
integra8
matrix13
pcs_0
rinfsup2
bcialg_3
bspace
polyform
lopban_5
int_5
flang_3
compl_sp
diff_2
mesfunc7
mesfunc8
bcialg_4
gfacirc2
matrix15
helly
euclid_6
int_7
ami_1
amistd_1
amistd_2
ami_7
amistd_3
scmnorm
ami_2
ami_3
ami_4
scm_1
fib_fusc
ami_5
scm_comp
reloc
scmfsa_1
scmfsa_2
scmfsa_3
scmfsa_4
scmfsa_5
scmfsa_7
scmfsa6a
sf_mastr
scmfsa6b
scmfsa6c
scmfsa7b
scmfsa8a
scmfsa8b
scmfsa8c
scmfsa_9
sfmastr1
scmfsa9a
sfmastr2
sfmastr3
scm_halt
scmbsort
scmring1
scmring2
scmisort
scmpds_1
scmpds_2
scmpds_3
scmpds_4
scmpds_5
scmpds_6
scmp_gcd
scmpds_7
scmring3
scmpds_8
scpisort
scpqsort
scpinvar
ami_6
scmfsa10
scmpds_9
scmring4