-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathmodels.py
136 lines (123 loc) · 5.57 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
import math
import numpy as np
import torch
import torch.nn as nn
class BMN(nn.Module):
def __init__(self, opt):
super(BMN, self).__init__()
self.tscale = opt["temporal_scale"]
self.prop_boundary_ratio = opt["prop_boundary_ratio"]
self.num_sample = opt["num_sample"]
self.num_sample_perbin = opt["num_sample_perbin"]
self.feat_dim=opt["feat_dim"]
self.hidden_dim_1d = 256
self.hidden_dim_2d = 128
self.hidden_dim_3d = 512
self._get_interp1d_mask()
# Base Module
self.x_1d_b = nn.Sequential(
nn.Conv1d(self.feat_dim, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True),
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True)
)
# Temporal Evaluation Module
self.x_1d_s = nn.Sequential(
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True),
nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1),
nn.Sigmoid()
)
self.x_1d_e = nn.Sequential(
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True),
nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1),
nn.Sigmoid()
)
# Proposal Evaluation Module
self.x_1d_p = nn.Sequential(
nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
self.x_3d_p = nn.Sequential(
nn.Conv3d(self.hidden_dim_1d, self.hidden_dim_3d, kernel_size=(self.num_sample, 1, 1),stride=(self.num_sample, 1, 1)),
nn.ReLU(inplace=True)
)
self.x_2d_p = nn.Sequential(
nn.Conv2d(self.hidden_dim_3d, self.hidden_dim_2d, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(self.hidden_dim_2d, 2, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
base_feature = self.x_1d_b(x)
start = self.x_1d_s(base_feature).squeeze(1)
end = self.x_1d_e(base_feature).squeeze(1)
confidence_map = self.x_1d_p(base_feature)
confidence_map = self._boundary_matching_layer(confidence_map)
confidence_map = self.x_3d_p(confidence_map).squeeze(2)
confidence_map = self.x_2d_p(confidence_map)
return confidence_map, start, end
def _boundary_matching_layer(self, x):
input_size = x.size()
out = torch.matmul(x, self.sample_mask).reshape(input_size[0],input_size[1],self.num_sample,self.tscale,self.tscale)
return out
def _get_interp1d_bin_mask(self, seg_xmin, seg_xmax, tscale, num_sample, num_sample_perbin):
# generate sample mask for a boundary-matching pair
plen = float(seg_xmax - seg_xmin)
plen_sample = plen / (num_sample * num_sample_perbin - 1.0)
total_samples = [
seg_xmin + plen_sample * ii
for ii in range(num_sample * num_sample_perbin)
]
p_mask = []
for idx in range(num_sample):
bin_samples = total_samples[idx * num_sample_perbin:(idx + 1) * num_sample_perbin]
bin_vector = np.zeros([tscale])
for sample in bin_samples:
sample_upper = math.ceil(sample)
sample_decimal, sample_down = math.modf(sample)
if int(sample_down) <= (tscale - 1) and int(sample_down) >= 0:
bin_vector[int(sample_down)] += 1 - sample_decimal
if int(sample_upper) <= (tscale - 1) and int(sample_upper) >= 0:
bin_vector[int(sample_upper)] += sample_decimal
bin_vector = 1.0 / num_sample_perbin * bin_vector
p_mask.append(bin_vector)
p_mask = np.stack(p_mask, axis=1)
return p_mask
def _get_interp1d_mask(self):
# generate sample mask for each point in Boundary-Matching Map
mask_mat = []
for end_index in range(self.tscale):
mask_mat_vector = []
for start_index in range(self.tscale):
if start_index <= end_index:
p_xmin = start_index
p_xmax = end_index + 1
center_len = float(p_xmax - p_xmin) + 1
sample_xmin = p_xmin - center_len * self.prop_boundary_ratio
sample_xmax = p_xmax + center_len * self.prop_boundary_ratio
p_mask = self._get_interp1d_bin_mask(
sample_xmin, sample_xmax, self.tscale, self.num_sample,
self.num_sample_perbin)
else:
p_mask = np.zeros([self.tscale, self.num_sample])
mask_mat_vector.append(p_mask)
mask_mat_vector = np.stack(mask_mat_vector, axis=2)
mask_mat.append(mask_mat_vector)
mask_mat = np.stack(mask_mat, axis=3)
mask_mat = mask_mat.astype(np.float32)
self.sample_mask = nn.Parameter(torch.Tensor(mask_mat).view(self.tscale, -1), requires_grad=False)
if __name__ == '__main__':
import opts
opt = opts.parse_opt()
opt = vars(opt)
model=BMN(opt)
input=torch.randn(2,400,100)
a,b,c=model(input)
print(a.shape,b.shape,c.shape)