-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathmain.py
182 lines (154 loc) · 7.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import sys
from dataset import VideoDataSet
from loss_function import bmn_loss_func, get_mask
import os
import json
import torch
import torch.nn.parallel
import torch.optim as optim
import numpy as np
import opts
from models import BMN
import pandas as pd
from post_processing import BMN_post_processing
from eval import evaluation_proposal
sys.dont_write_bytecode = True
def train_BMN(data_loader, model, optimizer, epoch, bm_mask):
model.train()
epoch_pemreg_loss = 0
epoch_pemclr_loss = 0
epoch_tem_loss = 0
epoch_loss = 0
for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader):
input_data = input_data.cuda()
label_start = label_start.cuda()
label_end = label_end.cuda()
label_confidence = label_confidence.cuda()
confidence_map, start, end = model(input_data)
loss = bmn_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda())
optimizer.zero_grad()
loss[0].backward()
optimizer.step()
epoch_pemreg_loss += loss[2].cpu().detach().numpy()
epoch_pemclr_loss += loss[3].cpu().detach().numpy()
epoch_tem_loss += loss[1].cpu().detach().numpy()
epoch_loss += loss[0].cpu().detach().numpy()
print(
"BMN training loss(epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, total_loss: %.03f" % (
epoch, epoch_tem_loss / (n_iter + 1),
epoch_pemclr_loss / (n_iter + 1),
epoch_pemreg_loss / (n_iter + 1),
epoch_loss / (n_iter + 1)))
def test_BMN(data_loader, model, epoch, bm_mask):
model.eval()
best_loss = 1e10
epoch_pemreg_loss = 0
epoch_pemclr_loss = 0
epoch_tem_loss = 0
epoch_loss = 0
for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader):
input_data = input_data.cuda()
label_start = label_start.cuda()
label_end = label_end.cuda()
label_confidence = label_confidence.cuda()
confidence_map, start, end = model(input_data)
loss = bmn_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda())
epoch_pemreg_loss += loss[2].cpu().detach().numpy()
epoch_pemclr_loss += loss[3].cpu().detach().numpy()
epoch_tem_loss += loss[1].cpu().detach().numpy()
epoch_loss += loss[0].cpu().detach().numpy()
print(
"BMN training loss(epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, total_loss: %.03f" % (
epoch, epoch_tem_loss / (n_iter + 1),
epoch_pemclr_loss / (n_iter + 1),
epoch_pemreg_loss / (n_iter + 1),
epoch_loss / (n_iter + 1)))
state = {'epoch': epoch + 1,
'state_dict': model.state_dict()}
torch.save(state, opt["checkpoint_path"] + "/BMN_checkpoint.pth.tar")
if epoch_loss < best_loss:
best_loss = epoch_loss
torch.save(state, opt["checkpoint_path"] + "/BMN_best.pth.tar")
def BMN_Train(opt):
model = BMN(opt)
model = torch.nn.DataParallel(model, device_ids=[0, 1]).cuda()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=opt["training_lr"],
weight_decay=opt["weight_decay"])
train_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="train"),
batch_size=opt["batch_size"], shuffle=True,
num_workers=8, pin_memory=True)
test_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="validation"),
batch_size=opt["batch_size"], shuffle=False,
num_workers=8, pin_memory=True)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt["step_size"], gamma=opt["step_gamma"])
bm_mask = get_mask(opt["temporal_scale"])
for epoch in range(opt["train_epochs"]):
scheduler.step()
train_BMN(train_loader, model, optimizer, epoch, bm_mask)
test_BMN(test_loader, model, epoch, bm_mask)
def BMN_inference(opt):
model = BMN(opt)
model = torch.nn.DataParallel(model, device_ids=[0, 1]).cuda()
checkpoint = torch.load(opt["checkpoint_path"] + "/BMN_best.pth.tar")
model.load_state_dict(checkpoint['state_dict'])
model.eval()
test_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="validation"),
batch_size=1, shuffle=False,
num_workers=8, pin_memory=True, drop_last=False)
tscale = opt["temporal_scale"]
with torch.no_grad():
for idx, input_data in test_loader:
video_name = test_loader.dataset.video_list[idx[0]]
input_data = input_data.cuda()
confidence_map, start, end = model(input_data)
# print(start.shape,end.shape,confidence_map.shape)
start_scores = start[0].detach().cpu().numpy()
end_scores = end[0].detach().cpu().numpy()
clr_confidence = (confidence_map[0][1]).detach().cpu().numpy()
reg_confidence = (confidence_map[0][0]).detach().cpu().numpy()
# 遍历起始分界点与结束分界点的组合
new_props = []
for idx in range(tscale):
for jdx in range(tscale):
start_index = idx
end_index = jdx + 1
if start_index < end_index and end_index<tscale :
xmin = start_index / tscale
xmax = end_index / tscale
xmin_score = start_scores[start_index]
xmax_score = end_scores[end_index]
clr_score = clr_confidence[idx, jdx]
reg_score = reg_confidence[idx, jdx]
score = xmin_score * xmax_score * clr_score * reg_score
new_props.append([xmin, xmax, xmin_score, xmax_score, clr_score, reg_score, score])
new_props = np.stack(new_props)
#########################################################################
col_name = ["xmin", "xmax", "xmin_score", "xmax_score", "clr_score", "reg_socre", "score"]
new_df = pd.DataFrame(new_props, columns=col_name)
new_df.to_csv("./output/BMN_results/" + video_name + ".csv", index=False)
def main(opt):
if opt["mode"] == "train":
BMN_Train(opt)
elif opt["mode"] == "inference":
if not os.path.exists("output/BMN_results"):
os.makedirs("output/BMN_results")
BMN_inference(opt)
print("Post processing start")
BMN_post_processing(opt)
print("Post processing finished")
evaluation_proposal(opt)
if __name__ == '__main__':
opt = opts.parse_opt()
opt = vars(opt)
if not os.path.exists(opt["checkpoint_path"]):
os.makedirs(opt["checkpoint_path"])
opt_file = open(opt["checkpoint_path"] + "/opts.json", "w")
json.dump(opt, opt_file)
opt_file.close()
# model = BMN(opt)
# a = torch.randn(1, 400, 100)
# b, c = model(a)
# print(b.shape, c.shape)
# print(b)
# print(c)
main(opt)