-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPointCloudNNBoundswithNewEmpty.py
676 lines (622 loc) · 31.4 KB
/
PointCloudNNBoundswithNewEmpty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# %%
import torch
import linAlgHelper
from scipy.spatial import ConvexHull, HalfspaceIntersection
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import numpy as np
from neuralVolumeHelper import randCam, matrixLookat, createInputVector_planeHitModel,HiddenPrints, SIREN, getView, circular2sinCosC,bound2Mesh, compare2CenteredModels, bound2Pointcloud, meshIt, modelCenterCorrection, getPredictionPoints,compare2CenteredModels, bound2bounds, meshBoundsTM, mesh2pointcloud, array2Pointcloud
import open3d as o3d
import trimesh as tm
from PointCloudNeuralNetDist import NeuralConvexReconstruction
from pathlib import Path
import os
pfad = "/home/jhm/Desktop/Arbeit/ConvexNeuralVolume"
ball = tm.primitives.Capsule(radius=1., height=0.,sections=128)
areasize = 1
def loadPoints(x_block,y_block,z_block):
my_file = Path(pfad+"/blocks/{}x{}y{}z.npy".format(x_block,y_block,z_block))
if my_file.is_file():
points = np.load(my_file)
return points
def loadEmptyPoints(x_block,y_block,z_block):
my_file = Path(pfad+"/emptyBlocks/e_{}x{}y{}z.npy".format(x_block,y_block,z_block))
if my_file.is_file():
points = np.load(my_file)
return points
def createBounds(size = 10.):
bounds = torch.zeros(12,3).cuda()
bounds[0,0] = -(np.random.rand()+0.3)
bounds[3,0] = (np.random.rand()+0.3)
bounds[1,1] = -(np.random.rand()+0.3)
bounds[4,1] = (np.random.rand()+0.3)
bounds[2,2] = -(np.random.rand()+0.3)
bounds[5,2] = (np.random.rand()+0.3)
bounds[6:12] = bounds[0:6] + (torch.rand((6,3)).cuda()*0.1-0.05)
bounds = bounds*size
return bounds
class NeuralBound:
pointDoubleOccupationVector = torch.Tensor([[]])
neuralBoundList = []
unoccupiedRegions = torch.Tensor([[]])
pointsVolumeOverlapVector = torch.Tensor([[0.,0.,0.]]).cuda()
pointsVolumeOverlapVectorDoubleOccupation = torch.Tensor([[0.,0.,0.]]).cuda()
def __init__(self,
bounds,
center=torch.Tensor([[0.,0.,0.]]),
centerLR = 0.001,
boundsLR = 0.01,
variableFaktoren = [2,2,2,3,3,3,5.,1.,2.],
maxPointsInput = 500000,
maxPointsChunk = 10000):
'''bounds should start with: [1.,0.,0.],[0.,1.,0.],[0.,0.,1.],[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]'''
self.center = center.cuda()
self.noOverlap = True
self.centerBackup = center
self.bounds = bounds
self.bounds = self.bounds.cuda()
self.center.requires_grad = True
self.bounds.requires_grad = True
self.centerOptim = torch.optim.Adam([self.center], lr=centerLR)
self.boundsOptim = torch.optim.Adam([self.bounds], lr=boundsLR)
self.variableFaktoren = variableFaktoren
self.neuralReconstruction = NeuralConvexReconstruction()
self.maxpointsInput = maxPointsInput
self.maxpointsChunk = maxPointsChunk
self.id = NeuralBound.neuralBoundList.__len__()
NeuralBound.neuralBoundList.append(self)
self.neuralNetTrained = True
self.adjustedForEpochs = 0
def getVolume(self):
return ((self.bounds[3]-self.bounds[0])[0].detach()*(self.bounds[4]-self.bounds[1])[1].detach()*(self.bounds[5]-self.bounds[2])[2].detach()).item()
def getBounds(self, addDistance=0.0):
minX = (self.center+self.bounds[0])[0].detach()-addDistance
maxX = (self.center+self.bounds[3])[0].detach()+addDistance
minY = (self.center+self.bounds[1])[1].detach()-addDistance
maxY = (self.center+self.bounds[4])[1].detach()+addDistance
minZ = (self.center+self.bounds[2])[2].detach()-addDistance
maxZ = (self.center+self.bounds[5])[2].detach()+addDistance
return [minX,maxX,minY,maxY,minZ,maxZ]
def clampBounds(self):
with torch.no_grad():
self.bounds[0,0].clamp(-99999,-0.01)
self.bounds[0,1] = 0.
self.bounds[0,2] = 0.
self.bounds[3,0].clamp(0.01,99999)
self.bounds[3,1] = 0.
self.bounds[3,2] = 0.
self.bounds[1,1].clamp(-99999,-0.01)
self.bounds[1,0] = 0.
self.bounds[1,2] = 0.
self.bounds[4,1].clamp(0.01,99999)
self.bounds[4,0] = 0.
self.bounds[4,2] = 0.
self.bounds[2,2].clamp(-99999,-0.01)
self.bounds[2,0] = 0.
self.bounds[2,1] = 0.
self.bounds[5,2].clamp(0.01,99999)
self.bounds[5,0] = 0.
self.bounds[5,1] = 0.
def boundsAdjustmentStep(self, surfacepoints, overlappoints, emptyPointPrototypes, emptyPointCellsize, color):
'''gets tensor(n,3) surfacespoints (surface ) with (n,1) values (1 for surface, -1 for empty)'''
size = self.bounds[:6].detach().abs().max()
try:
if surfacepoints is None:
return {"overlap":0.,
"missedPoints": 0.,
"flippotential": 0.,
"innersurfaceLoss": 0.,
"inside Empty": 0.}, False
except: pass
try:
if overlappoints is None:
overlappoints = []
except: pass
try:
if emptyPointPrototypes is None:
emptyPointPrototypes = torch.tensor([[0.,0.,0.,]])
except: pass
if len(surfacepoints) > self.maxpointsInput:
surfacepoints = surfacepoints.cpu()
if len(overlappoints) > self.maxpointsInput:
overlappoints = overlappoints.cpu()
if len(emptyPointPrototypes) > self.maxpointsInput:
emptyPointPrototypes = emptyPointPrototypes.cpu()
if len(color) > self.maxpointsInput:
color = color.cpu()
missedPointsLoss_all = torch.tensor(0.)
innerSurfaceLoss_all = torch.tensor(0.)
innerEmptyLoss_all = torch.tensor(0.)
doubleOccLoss_all = torch.tensor(0.)
flipPotential_all = torch.ones((len(self.bounds)))
flipPotential = torch.ones((len(self.bounds)))
killme = True
allSurfaceWeight = 0
#split inputdata
for endFaktor in range(0,len(surfacepoints)//self.maxpointsInput+1):
surfacepoints_ = (surfacepoints[endFaktor*self.maxpointsInput:(endFaktor+1)*self.maxpointsInput]).detach().float().cuda()
color_ = (color[endFaktor*self.maxpointsInput:(endFaktor+1)*self.maxpointsInput]).detach().float().cuda()
#test that there are not more valid points than the chunksize
with torch.no_grad():
centeredPoints_surface = surfacepoints_-self.center
boundsTest_surface = linAlgHelper.getPointDistances2PlaneNormal(centeredPoints_surface[None,:,:], self.bounds[None,:,:])[0]
near_surface = boundsTest_surface>-size*self.variableFaktoren[0]
completeNear_surface = near_surface.sum(dim=1)==near_surface.shape[1]
in_surface = boundsTest_surface>0
completeIn_surface = in_surface.sum(dim=1)==in_surface.shape[1]
del boundsTest_surface,near_surface, in_surface
surfacepoints_ = surfacepoints_[completeNear_surface]
color_ = color_[completeNear_surface]
inMask = completeIn_surface[completeNear_surface]
#split surface-point learning
for chunkFactor in range(len(surfacepoints_)//self.maxpointsChunk+1):
surfacepointsChunk = surfacepoints_[chunkFactor*self.maxpointsChunk:(chunkFactor+1)*self.maxpointsChunk]
colorChunk = color_[chunkFactor*self.maxpointsChunk:(chunkFactor+1)*self.maxpointsChunk]
inMaskChunk = inMask[chunkFactor*self.maxpointsChunk:(chunkFactor+1)*self.maxpointsChunk]
centeredPoints_surface = surfacepointsChunk-self.center
boundsTest_surface = linAlgHelper.getPointDistances2PlaneNormal(centeredPoints_surface[None,:,:], self.bounds[None,:,:])[0]
value = (torch.sigmoid(abs(boundsTest_surface.detach()/size)) * torch.clamp(torch.sigmoid(boundsTest_surface.detach()/(size)),0.,0.5)).prod(dim=1)
innerSurfaceLoss = torch.tensor(0.)
if len(boundsTest_surface > 0):
flipPotential = torch.zeros_like(boundsTest_surface[0,:])
if inMaskChunk.sum() > 0:
killme = False
if inMaskChunk.sum() > 10:
innerSurfaceLoss = (boundsTest_surface[inMaskChunk]/torch.linalg.norm(self.bounds,ord=2,dim=1)).min(axis=1)[0].mean()*self.variableFaktoren[10]
if inMaskChunk.sum() > 80:
flipPotential = boundsTest_surface[inMaskChunk].min(axis=0)[0]/torch.linalg.norm(self.bounds,ord=2,dim=1)
#train neural reconstruction -bounds influence training value
points = centeredPoints_surface.detach()
del centeredPoints_surface
if len(points) > 0:
lastNNLoss, NNDifference = self.neuralReconstruction.train(points.float(), value.float())
self.neuralReconstruction.trainColor(points.float(), value.float(), colorChunk.float())
if lastNNLoss < size*0.01:
self.neuralNetTrained = True
NNValue = torch.relu(size*0.1-abs(NNDifference))/size*0.1
# adjust bounds
if self.neuralNetTrained:
outsideGradient_surface = torch.nn.functional.leaky_relu(torch.tanh(-boundsTest_surface*self.variableFaktoren[3]/size),0.001)
else:
outsideGradient_surface = torch.nn.functional.leaky_relu(torch.tanh(-boundsTest_surface*self.variableFaktoren[3]/size),0.001)
#Regularize Model center to Prediction center
with torch.no_grad():
self.centerBackup = self.center.detach().clone()
centerCorrection = modelCenterCorrection(self.neuralReconstruction.learnModel,self.neuralReconstruction.learnModelLastLayer)
centerError = torch.nn.functional.l1_loss(self.center,centerCorrection+self.center.detach())
with torch.no_grad():
if self.center.isnan().sum() > 0:
print("resetting center to ", self.centerBackup)
self.center = self.centerBackup.clone()
self.center.requires_grad=True
self.optimCenter = torch.optim.Adam([self.center], lr=0.005)
innerSurfaceLoss_all = (innerSurfaceLoss_all +innerSurfaceLoss.detach()).detach()
del points
missedPointsLoss = (outsideGradient_surface).mean()*self.variableFaktoren[6] +((flipPotential*self.variableFaktoren[11]).mean()+innerSurfaceLoss)*0.02
del outsideGradient_surface
#add centerCorrection to loss
if self.neuralNetTrained:
missedPointsLoss = missedPointsLoss+centerError+innerSurfaceLoss
missedPointsLoss.backward()
missedPointsLoss_all += missedPointsLoss.detach().cpu()
self.centerOptim.step()
self.boundsOptim.step()
self.clampBounds()
self.centerOptim.zero_grad()
self.boundsOptim.zero_grad()
#del missedPointFactor, value, difference
flipPotential_all = torch.stack((flipPotential.cpu().detach(),flipPotential_all),0).min(axis=0)[0]
#adjust for empty points
#adjust empty and surface-point sizes
repeatfactor = min(1,len(surfacepoints)//len(emptyPointPrototypes))
del completeNear_surface, surfacepoints, surfacepoints_
for repeatNr in range(repeatfactor):
#chunk to max size
for endFaktor in range(0,len(emptyPointPrototypes)//self.maxpointsInput+1):
emptyPointPrototypes_ = torch.tensor(emptyPointPrototypes[endFaktor*self.maxpointsInput:(endFaktor+1)*self.maxpointsInput]).float().cuda()
#test that there are not more valid points than the chunksize
with torch.no_grad():
centeredPoints_empty = emptyPointPrototypes_-self.center
boundsTest_empty = linAlgHelper.getPointDistances2PlaneNormal(centeredPoints_empty[None,:,:], self.bounds[None,:,:])[0]
near_empty = boundsTest_empty>-emptyPointCellsize
completeNear_empty = near_empty.sum(dim=1)==near_empty.shape[1]
del boundsTest_empty,near_empty
emptyPointPrototypes_ = emptyPointPrototypes_[completeNear_empty]
#split empty-point learning
if len(emptyPointPrototypes_) == 0:
continue
for chunkFactor in range(len(emptyPointPrototypes_)//self.maxpointsChunk+1):
emptyPrototypes_ = emptyPointPrototypes_[chunkFactor*self.maxpointsChunk:(chunkFactor+1)*self.maxpointsChunk].cuda()
#create empty points
emptypoints = emptyPrototypes_+((torch.rand_like(emptyPrototypes_)-0.5).cuda() *emptyPointCellsize)
del surfacepointsChunk
boundsTest_empty = linAlgHelper.getPointDistances2PlaneNormal(emptypoints[None,:,:], self.bounds[None,:,:])[0]
insideGradient_empty = torch.nn.functional.leaky_relu(torch.tanh(boundsTest_empty*self.variableFaktoren[2]/size),0.001)
innerEmptyLoss= insideGradient_empty.mean()*self.variableFaktoren[7]
innerEmptyLoss.backward()
innerEmptyLoss_all += innerEmptyLoss.detach().cpu()
del insideGradient_empty, boundsTest_empty
self.centerOptim.step()
self.boundsOptim.step()
self.clampBounds()
self.centerOptim.zero_grad()
self.boundsOptim.zero_grad()
for endFaktor in range(0,len(overlappoints)//self.maxpointsInput+1):
if len(overlappoints) == 0:
self.noOverlap = True
continue
#test that there are not more valid points than the chunksize
with torch.no_grad():
centeredPoints_overlap = torch.tensor(overlappoints[endFaktor*self.maxpointsInput:(endFaktor+1)*self.maxpointsInput]).cuda()-self.center
boundsTest_doubleOcc = linAlgHelper.getPointDistances2PlaneNormal(centeredPoints_overlap[None,:,:], self.bounds[None,:,:])[0]
near_doubleOcc = boundsTest_doubleOcc>-size*self.variableFaktoren[1] #self.variableFaktoren[2] = 1.0
completeNear_doubleOcc = near_doubleOcc.sum(dim=1)==near_doubleOcc.shape[1]
#chunk the relevant points
#split surface-point learning
inputPoints = centeredPoints_overlap[completeNear_doubleOcc]
for chunkFactor in range(len(inputPoints)//self.maxpointsChunk+1):
centeredPoints_overlap_chunk = inputPoints[chunkFactor*self.maxpointsChunk:(chunkFactor+1)*self.maxpointsChunk]
boundsTest_doubleOcc = linAlgHelper.getPointDistances2PlaneNormal(centeredPoints_overlap_chunk[None,:,:], self.bounds[None,:,:])[0]
with torch.no_grad():
in_surface = boundsTest_doubleOcc>0
completeIn_surface = in_surface.sum(dim=1)==in_surface.shape[1]
if completeIn_surface.sum() > 0:
self.noOverlap = False
else:
self.noOverlap = True
insideGradient_doubleOcc = torch.nn.functional.leaky_relu(torch.tanh(boundsTest_doubleOcc*self.variableFaktoren[4]/size),0.001)
if len(insideGradient_doubleOcc) > 0:
doubleOccLoss = (self.variableFaktoren[5]*insideGradient_doubleOcc.mean())
doubleOccLoss_all += doubleOccLoss.detach().cpu()
doubleOccLoss.backward()
self.centerOptim.step()
self.boundsOptim.step()
self.clampBounds()
self.centerOptim.zero_grad()
self.boundsOptim.zero_grad()
# flip if necessary
maxFlip = flipPotential_all.argmax()
if flipPotential_all[maxFlip] > 1.0:
print("moved from ",self.center)
self.center = self.center - flipPotential_all[maxFlip]
print(" to ",self.center)
return {"overlap":doubleOccLoss_all.item(),
"missedPoints": missedPointsLoss_all.item(),
"flippotential": flipPotential_all.max(),
"innersurfaceLoss": innerSurfaceLoss_all.item(),
"inside Empty": innerEmptyLoss_all.item()}, killme
def getCellBlocks(self, distance=0.0):
minX,maxX,minY,maxY,minZ,maxZ = self.getBounds(addDistance=distance)
cells = set()
for x in range(int(minX//35),int(maxX//35)+1):
for y in range(int(minY//35),int(maxY//35)+1):
for z in range(int(minZ//35),int(maxZ//35)+1):
cells.add((x,y,z))
return cells
def filterPoints(self, points, mask):
with torch.no_grad():
centeredPoints = points-self.center
boundsTest_surface = linAlgHelper.getPointDistances2PlaneNormal(centeredPoints[None,:,:], self.bounds[None,:,:])[0]
in_surface = boundsTest_surface>0
completeIn_surface = in_surface.sum(dim=1)==in_surface.shape[1]
mask[completeIn_surface] = True
return mask
def train(self, neuralVolumeCellRegister, loss):
# get the relevant pointcells
selfCells = self.getCellBlocks()
#delete own cells from CellRegister
otherVolumePoints = neuralVolumeCellRegister.popNearbyVolumePoints(selfCells, self.id)
points = None
emptyPoints = None
size = self.bounds[:6].detach().abs().max()
selfCells = self.getCellBlocks(distance=size)
for cell in list(selfCells):
if emptyPoints is None:
emptyPoints = loadEmptyPoints(cell[0],cell[1],cell[2])
else:
try:
emptyPoints = torch.cat((emptyPoints,loadEmptyPoints(cell[0],cell[1],cell[2])),0)
except: pass
try:
if points == None:
points = torch.tensor(loadPoints(cell[0],cell[1],cell[2]))
else:
points = torch.cat((points,torch.tensor(loadPoints(cell[0],cell[1],cell[2]))),0)
except:
try:
points = torch.cat((points,torch.tensor(loadPoints(cell[0],cell[1],cell[2]))),0)
except: pass
killMe = False
try:
if points is None:
print("No points inside")
killMe = True
return loss, killMe
except:
pass
if size < 0.04:
print("Size to small")
killMe = True
color = points[:,3:6]
points = points[:,:3]
if self.noOverlap:
for subiter in range(50):
vLoss, killMe = self.boundsAdjustmentStep(points, otherVolumePoints, emptyPoints, 4., color)
if self.noOverlap == False:
break
else:
vLoss, killMe = self.boundsAdjustmentStep(points, otherVolumePoints, emptyPoints, 4., color)
selfCells = self.getCellBlocks()
neuralVolumeCellRegister.registerId(selfCells, self.id)
loss["overlap"] += vLoss["overlap"]
loss["missedPoints"] += vLoss["missedPoints"]
loss["innersurfaceLoss"] += vLoss["innersurfaceLoss"]
loss["flippotential"] += vLoss["flippotential"]
loss["inside Empty"] += vLoss["inside Empty"]
loss["volumes"] += 1
return loss, killMe
def getInsidePoints(self, pointNr = 10000):
minX,maxX,minY,maxY,minZ,maxZ = self.getBounds()
data = (torch.rand(int(abs(pointNr)),3).cuda()-0.5) * 2.*torch.tensor([[maxX-minX, maxY-minY, maxZ-minZ]]).cuda()# + torch.tensor([[minX, minY, minZ]]).cuda()
boundsTest = linAlgHelper.getPointDistances2PlaneNormal(data[None,:,:], self.bounds.detach()[None,:,:])[0]
inside = boundsTest>0
inside = inside.sum(dim=1)==inside.shape[1]
filtered = torch.cat([data[inside].cpu(),self.bounds.detach().cpu()],0) + self.center.detach().cpu()
return filtered
def show(self):
filtered = self.getInsidePoints()
filteredIdx = torch.arange(len(filtered))
hull = ConvexHull(filtered)
verts_ = torch.tensor(hull.vertices)
vertIdx = torch.arange(len(verts_))
filteredIdx[verts_.long()] = vertIdx
faces_ = torch.tensor(hull.simplices)
vertices, faces = filtered[verts_.long()], filteredIdx[faces_.long()]
mesh = tm.Trimesh(vertices=vertices, faces=faces)
pointcloudPoints = mesh.sample(2000)
pointcloudMesh = o3d.geometry.PointCloud(points=o3d.utility.Vector3dVector(pointcloudPoints))
colors = np.ones_like(pointcloudPoints).astype(np.float64)
colors[:,2] = colors[:,2]*np.random.rand()
colors[:,1] = colors[:,1]*np.random.rand()
colors[:,0] = colors[:,0]*np.random.rand()
pointcloudMesh.colors = o3d.utility.Vector3dVector(colors)
return(pointcloudMesh)
heightsKeys = np.load(pfad+"/heights.npy")
heigthsValues = np.load(pfad+"/heightsValues.npy")
heights = {}
for i in range(len(heightsKeys)):
heights[(heightsKeys[i][0],
heightsKeys[i][1])] = heigthsValues[i]
class NeuralVolumeCellRegister:
def __init__(self):
self.registeredCellBlocks = {}
self.minXBlock = 999999
self.maxXBlock = -999999
self.minYBlock = 999999
self.maxYBlock = -999999
self.minZBlock = 999999
self.maxZBlock = -999999
def popNearbyVolumePoints(self, selfCells, id):
points = None
idList = []
for cell in selfCells:
if cell in self.registeredCellBlocks:
self.registeredCellBlocks[cell].remove(id)
idList +=(self.registeredCellBlocks[cell])
if len(self.registeredCellBlocks[cell]) == 0:
del self.registeredCellBlocks[cell]
try:
idList = np.unique(np.array(idList)).tolist()
except: pass
for vid in idList:
v = NeuralBound.neuralBoundList[vid]
if points is None:
points = v.getInsidePoints(pointNr = min(v.getVolume()*1000,10000))
else:
points = torch.cat([points,v.getInsidePoints(pointNr = min(v.getVolume()*1000,10000))],0)
return points
def showNearbyVolumes(self, xmin,xmax,ymin,ymax):
idList = []
for x in range(xmin,xmax):
for y in range(ymin,ymax):
if (x,y) in heights:
for z in range(heights[(x,y)][0],heights[(x,y)][1]):
if (x,y,z) in self.registeredCellBlocks:
idList +=(self.registeredCellBlocks[(x,y,z)])
try:
idList = np.unique(np.array(idList)).tolist()
except: pass
return idList
def registerId(self, selfCells, id):
for cell in selfCells:
if cell in self.registeredCellBlocks:
self.registeredCellBlocks[cell].append(id)
else:
self.registeredCellBlocks[cell] = [id]
'''def createNewNeuralBounds(self, xBlock,yBlock,zBlock):
points = loadPoints(xBlock,yBlock,zBlock)
if points is None:
return
if (xBlock,yBlock,zBlock) not in self.registeredCellBlocks:
vNew = '''
register = NeuralVolumeCellRegister()
gridparameter = [] # 0: nearSurfaceFaktor,
# 1: nearDoubleOccFaktor,
# 2: insideEmptySigmoidFaktor,
# 3: missedPointLossSigmoidFaktor,
# 4: volumeOverlapSigmoidFaktor,
# 5: overLapFactor
# 6: missedPointFaktor,
# 7:innerEmptyFaktor,
# 8: LR center
# 9: LR bounds
# 10: Surfacelossfactor
# 11: FlippotentialFactor
nearSurfaceFaktor = [0.5]
nearDoubleOccFaktor = [0.]
insideEmptySigmoidFaktor = [3.]
missedPointLossSigmoidFaktor = [0.5]
volumeOverlapSigmoidFaktor = [3.]
overLapFactorChoice = [10.]
missedPointFaktor = [80]
innerEmptyFaktor = [10.]
LR_center = [0.0003]
LR_bounds = [0.0006]
Surfacelossfactor = [1.]
FlippotentialFactor = [1.]
gridparameter=torch.tensor([np.random.choice(nearSurfaceFaktor,1),
np.random.choice(nearDoubleOccFaktor,1),
np.random.choice(insideEmptySigmoidFaktor,1),
np.random.choice(missedPointLossSigmoidFaktor,1),
np.random.choice(volumeOverlapSigmoidFaktor,1),
np.random.choice(overLapFactorChoice,1),
np.random.choice(missedPointFaktor,1),
np.random.choice(innerEmptyFaktor,1),
np.random.choice(LR_center,1),
np.random.choice(LR_bounds,1),
np.random.choice(Surfacelossfactor,1),
np.random.choice(FlippotentialFactor,1)])[:,0]
#load and register all neural volumes
'''
volList = os.listdir(pfad+"/neuralVolumes")
for v in volList:
array = np.load(pfad+"/neuralVolumes/"+v)
center = array[0]
Hrep = array[1:]
newVolume = NeuralBound(torch.tensor(Hrep).cuda() ,center =torch.tensor(center).cuda(),centerLR = gridparameter[-2],
boundsLR = gridparameter[-1],
variableFaktoren= torch.tensor(gridparameter[:-2]).cuda())
cells = newVolume.getCellBlocks()
register.registerId(cells, newVolume.id)
'''
#for every neural Volume load the points and train the network/bounds
#if the bounds are to small delete the neural volume
#if the near volume contains no points delete the neural volume
x_mid = int(25*5/35)
y_mid = int(341*5/35)
z_mid = int(121*5/35)
ids = []
points = loadPoints(x_mid,y_mid,z_mid)
for x in range(-areasize+x_mid,areasize+x_mid):
for y in range(-areasize+y_mid,areasize+y_mid):
if (x,y) in heights:
for z in range(heights[(x,y)][0],heights[(x,y)][1]): #load all z
points_ = loadPoints(x,y,z)
if (x,y,z) in register.registeredCellBlocks:
ids+=register.registeredCellBlocks[(x,y,z)]
if points_ is not None:
try:
points = np.concatenate([points,points_],0)
except:
points = points_
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points[:,:3])
pcd.colors = o3d.utility.Vector3dVector(points[:,3:])
def spawnNewVolumes(x,y,z):
try:
points = torch.tensor(loadPoints(x,y,z))[:,:3].float().cuda()
except:
return
mask = torch.zeros_like(points[:,0],dtype=bool).cuda()
if points is None:
return
ids = []
if (x,y,z) in register.registeredCellBlocks:
ids = register.registeredCellBlocks[(x,y,z)]
for id in ids:
v = NeuralBound.neuralBoundList[id]
mask = v.filterPoints(points,mask)
startPoints = points[~mask]
startPoints[:,2] = startPoints[:,2] - 0.3
if len(startPoints)>0:
for i in range(int(len(startPoints)/5000)+1):
pointNr = np.random.randint(len(startPoints))
newVolume = NeuralBound(createBounds(size=4.).float().cuda() ,center =startPoints[pointNr].float().cuda(),centerLR = gridparameter[8],
boundsLR = gridparameter[9],
variableFaktoren= torch.tensor(gridparameter).cuda())
cells = newVolume.getCellBlocks()
register.registerId(cells, newVolume.id)
#load random cells
for x in range(-areasize+x_mid,areasize+x_mid):
for y in range(-areasize+y_mid,areasize+y_mid):
if (x,y) in heights:
for z in range(heights[(x,y)][0],heights[(x,y)][1]):
spawnNewVolumes(x,y,z)
volcloudOld = []
for v in NeuralBound.neuralBoundList:
volcloudOld.append(v.show())
for iteration in range(40):
killList = []
loss = {}
loss["overlap"] = torch.tensor(0.)
loss["missedPoints"] = torch.tensor(0.)
loss["innersurfaceLoss"] = torch.tensor(0.)
loss["flippotential"] = torch.tensor(0.)
loss["volumes"] = torch.tensor(0)
loss["inside Empty"] = torch.tensor(0.)
for i, volume in enumerate(NeuralBound.neuralBoundList):
if volume is None:
continue
'''volcloud = []
for v in NeuralBound.neuralBoundList:
if v is None:
continue
volcloud.append(v.show())
o3d.visualization.draw_geometries(volcloud+[pcd])
if volume is None:
continue
o3d.visualization.draw_geometries([volume.show()]+[pcd])'''
print("training volume ",i," of ",len(NeuralBound.neuralBoundList), "iteration: ", iteration)
loss, killme = volume.train(register, loss)
if killme:
killList.append(i)
for i in killList:
'''volcloud = []
for v in NeuralBound.neuralBoundList:
if v is None:
continue
volcloud.append(v.show())
o3d.visualization.draw_geometries([NeuralBound.neuralBoundList[i].show()]+[pcd])
o3d.visualization.draw_geometries(volcloud+[pcd])'''
cells = NeuralBound.neuralBoundList[i].getCellBlocks()
try:
register.popNearbyVolumePoints(cells, i)
volcloud = []
for v in NeuralBound.neuralBoundList:
if v is None:
continue
volcloud.append(v.show())
o3d.visualization.draw_geometries([NeuralBound.neuralBoundList[i].show()]+[pcd])
o3d.visualization.draw_geometries(volcloud+[pcd])
except: pass
NeuralBound.neuralBoundList[i] = None
if iteration%50 == 49:
for x in range(-areasize+x_mid,areasize+x_mid):
for y in range(-areasize+y_mid,areasize+y_mid):
if (x,y) in heights:
for z in range(heights[(x,y)][0],heights[(x,y)][1]):
if torch.rand(1).item()<0.07:
spawnNewVolumes(x,y,z)
print(loss)
for i, volume in enumerate(NeuralBound.neuralBoundList):
if volume is None:
try:
os.remove(pfad+"/saveNeuralNetwork/{}.npy".format(i))
os.remove(pfad+"/saveNeuralNetworkReconstruction/{}.pt".format(i))
except: pass
continue
else:
np.save(pfad+"/saveNeuralNetwork/{}".format(i), torch.cat((volume.bounds,volume.center[None,:]),0).detach().cpu().numpy())
torch.save(volume.neuralReconstruction,pfad+"/saveNeuralNetworkReconstruction/{}.pt".format(i))
volcloud = []
for v in NeuralBound.neuralBoundList:
if v is None:
continue
volcloud.append(v.show())
o3d.visualization.draw_geometries(volcloud+[pcd])
# %%
#for a region: if there are points which are not covered by a neural volume
# create a new neural volume
#(do this every few iterations)
# %%