-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetDebug.py
134 lines (114 loc) · 5.79 KB
/
NeuralNetDebug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import linAlgHelper
from scipy.spatial import ConvexHull, HalfspaceIntersection
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import numpy as np
from neuralVolumeHelper import randCam, matrixLookat, createInputVector_planeHitModel,HiddenPrints, SIREN, getView, circular2sinCosC,bound2Mesh, compare2CenteredModels, bound2Pointcloud, meshIt, modelCenterCorrection, getPredictionPoints,compare2CenteredModels, bound2bounds, meshBoundsTM, mesh2pointcloud, array2Pointcloud
import open3d as o3d
import trimesh as tm
ball = tm.primitives.Capsule(radius=1., height=0.,sections=128)
class NeuralConvexReconstruction:
def __init__(self, center):
self.learnModel = SIREN([12,64, 64], lastlayer=False).cuda()
self.learnModelLastLayer = SIREN([64], lastlayer=True).cuda()
self.uncertaintyModel = torch.nn.Sequential(nn.Linear(12,256),nn.ReLU(),nn.Linear(256,67)).cuda()
self.optimLearn = torch.optim.Adam(self.learnModel.parameters(), lr=0.001)
self.optimLast = torch.optim.Adam(self.learnModelLastLayer.parameters(), lr=0.001)
self.center = center
self.center.requires_grad=True
self.optimCenter = torch.optim.Adam([self.center], lr=0.005)
self.lastLoss = 1.
def train(self, centered_points, value):
'''points are the n,3 karthesian coordinate points. value is the certainty, that the point belongs to the convex part. It will have an effekt on the loss of the network.
The value is initially derived from the differenciation inside-the bounds, outside (near) the bounds'''
self.optimLast.zero_grad()
self.optimLearn.zero_grad()
self.optimCenter.zero_grad()
prediction, difference, prediction1 = self.predict(centered_points)
loss = torch.nn.functional.leaky_relu(difference*value, negative_slope=0.3).abs().mean()
#Regularize Model center to Prediction center
centerCorrection = modelCenterCorrection(self.learnModel,self.learnModelLastLayer)
centerError = torch.nn.functional.l1_loss(self.center,centerCorrection+self.center.detach())
loss += centerError
lossFactor = self.lastLoss
self.lastLoss = loss.detach()
#regularisation is only possible if there are points from all "sections" - so we have to imagine a few for this
l2_lambda = 0.001
l2_regularizer = sum(p.pow(2.0).sum()
for p in self.learnModel.parameters())
l2_regularizer += sum(p.pow(2.0).sum()
for p in self.learnModelLastLayer.parameters())
loss = (loss + l2_lambda * l2_regularizer)*lossFactor
loss.backward()
self.optimLast.step()
self.optimLearn.step()
self.optimCenter.step()
self.optimLast.zero_grad()
self.optimLearn.zero_grad()
self.optimCenter.zero_grad()
return self.lastLoss
def trainEmpty(self, empty_centered_points, size):
self.optimLast.zero_grad()
self.optimLearn.zero_grad()
prediction, difference, prediction1 = self.predict(empty_centered_points)
loss = torch.nn.functional.relu(-difference/size).abs().sum()
loss.backward()
self.optimLast.step()
self.optimLearn.step()
return difference.detach()
def predict(self,centered_points):
sphericalInput = linAlgHelper.asSpherical(centered_points)
circularIn = circular2sinCosC(sphericalInput[:,:2].float())
prediction1 = self.learnModel(circularIn)
prediction = self.learnModelLastLayer(prediction1)
difference = prediction-sphericalInput[:,2][:,None]
return prediction, difference, prediction1
def predictSphere(self):
inputPoints = ball.sample(10000)
sphericalInput = linAlgHelper.asSpherical(torch.tensor(inputPoints).float())[:,:2].cuda()
with torch.no_grad():
prediction, difference, prediction1 = self.predict(torch.tensor(inputPoints).float().cuda())
predictedSpherical = torch.cat((sphericalInput,abs(prediction)),dim=1)
points = (linAlgHelper.asCartesian(predictedSpherical))
return points, predictedSpherical
def show(self, color = None):
if color is None:
color = np.random.rand(3)
with torch.no_grad():
points,_ = self.predictSphere()
points = (points+self.center.detach()).cpu()
pointcloud = o3d.geometry.PointCloud(points=o3d.utility.Vector3dVector(points))
colors = np.ones_like(points).astype(np.float64)
colors[:,2] = colors[:,2]*color[2]
colors[:,1] = colors[:,1]*color[1]
colors[:,0] = colors[:,1]*color[0]
pointcloud.colors = o3d.utility.Vector3dVector(colors)
return pointcloud
neuRec = NeuralConvexReconstruction(torch.tensor([0.,0.,0.]).cuda())
target = tm.load("hotuce.OBJ")
path = []
#train
smoothLoss = 0.
first = True
for i in range(200):
tpoints = torch.tensor(target.sample(5000))
loss = abs(neuRec.train(tpoints.float().cuda()-neuRec.center, torch.ones(5000).cuda()))
if first:
smoothLoss = loss
first = False
smoothLoss = smoothLoss*0.95 + loss.item()*0.05
if i%10 == 0:
path.append(neuRec.show())
print(smoothLoss)
print(neuRec.center.detach())
pointcloudTarget = target.sample(5000)
pointcloudT = o3d.geometry.PointCloud(points=o3d.utility.Vector3dVector(pointcloudTarget))
colors = np.ones_like(pointcloudTarget).astype(np.float64)
colors[:,0] = colors[:,0]*0.
colors[:,1] = colors[:,1]*0.
pointcloudT.colors = o3d.utility.Vector3dVector(colors)
o3d.visualization.draw_geometries( [pointcloudT]+path)#+path)
o3d.visualization.draw_geometries( [pointcloudT]+[path[-1]])#+path)
o3d.visualization.draw_geometries( [path[-1]])#+path)