-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
160 lines (125 loc) · 4.96 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from collections import Counter
#from sklearn.utils.linear_assignment_ import linear_assignment
from scipy.optimize import linear_sum_assignment as linear_assignment
def f1(p_num, p_den, r_num, r_den, beta=1):
p = 0 if p_den == 0 else p_num / float(p_den)
r = 0 if r_den == 0 else r_num / float(r_den)
return 0 if p + r == 0 else (1 + beta * beta) * p * r / (beta * beta * p + r)
class CorefEvaluator(object):
def __init__(self):
self.evaluators = [Evaluator(m) for m in (muc, b_cubed, ceafe)]
def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
for e in self.evaluators:
e.update(predicted, gold, mention_to_predicted, mention_to_gold)
def get_f1(self):
f1 = sum(e.get_f1() for e in self.evaluators) / len(self.evaluators)
print('MUC',self.evaluators[0].get_f1())
print('B3',self.evaluators[1].get_f1())
print('CEAFE',self.evaluators[2].get_f1())
return f1, self.evaluators[0].get_f1(),self.evaluators[1].get_f1(),self.evaluators[2].get_f1()
def get_recall(self):
return sum(e.get_recall() for e in self.evaluators) / len(self.evaluators)
def get_precision(self):
return sum(e.get_precision() for e in self.evaluators) / len(self.evaluators)
def get_prf(self):
return self.get_precision(), self.get_recall(), self.get_f1()
class Evaluator(object):
def __init__(self, metric, beta=1):
self.p_num = 0
self.p_den = 0
self.r_num = 0
self.r_den = 0
self.metric = metric
self.beta = beta
def update(self, predicted, gold, mention_to_predicted, mention_to_gold):
# predicted = [((4, 4), (4, 4), (16, 4), (17, 17))]
if self.metric == ceafe:
pn, pd, rn, rd = self.metric(predicted, gold)
else:
pn, pd = self.metric(predicted, mention_to_gold)
rn, rd = self.metric(gold, mention_to_predicted)
self.p_num += pn
self.p_den += pd
self.r_num += rn
self.r_den += rd
# print(predicted)
# print(gold)
def get_f1(self):
f1_score = f1(self.p_num, self.p_den, self.r_num, self.r_den, beta=self.beta)
return f1_score
def get_recall(self):
return 0 if self.r_num == 0 else self.r_num / float(self.r_den)
def get_precision(self):
return 0 if self.p_num == 0 else self.p_num / float(self.p_den)
def get_prf(self):
return self.get_precision(), self.get_recall(), self.get_f1()
def get_counts(self):
return self.p_num, self.p_den, self.r_num, self.r_den
def evaluate_documents(documents, metric, beta=1):
evaluator = Evaluator(metric, beta=beta)
for document in documents:
evaluator.update(document)
return evaluator.get_precision(), evaluator.get_recall(), evaluator.get_f1()
def b_cubed(clusters, mention_to_gold):
num, dem = 0, 0
for c in clusters:
if len(c) == 1:
continue
gold_counts = Counter()
correct = 0
for m in c:
if m in mention_to_gold:
gold_counts[tuple(mention_to_gold[m])] += 1
for c2, count in gold_counts.items():
if len(c2) != 1:
correct += count * count
num += correct / float(len(c))
dem += len(c)
return num, dem
def muc(clusters, mention_to_gold):
tp, p = 0, 0
for c in clusters:
p += len(c) - 1
tp += len(c)
linked = set()
for m in c:
if m in mention_to_gold:
linked.add(mention_to_gold[m])
else:
tp -= 1
tp -= len(linked)
return tp, p
def phi4(c1, c2):
return 2 * len([m for m in c1 if m in c2]) / float(len(c1) + len(c2))
def ceafe(clusters, gold_clusters):
clusters = [c for c in clusters if len(c) != 1]
scores = np.zeros((len(gold_clusters), len(clusters)))
for i in range(len(gold_clusters)):
for j in range(len(clusters)):
scores[i, j] = phi4(gold_clusters[i], clusters[j])
matching = linear_assignment(-scores)
similarity = sum(scores[matching[0], matching[1]])
#similarity = sum(scores[matching[:, 0], matching[:, 1]])
#similarity = 0.0
#for ri, ci in zip(matching):
# similarity += scores[ri,ci]
return similarity, len(clusters), similarity, len(gold_clusters)
def lea(clusters, mention_to_gold):
num, dem = 0, 0
for c in clusters:
if len(c) == 1:
continue
common_links = 0
all_links = len(c) * (len(c) - 1) / 2.0
for i, m in enumerate(c):
if m in mention_to_gold:
for m2 in c[i + 1:]:
if m2 in mention_to_gold and mention_to_gold[m] == mention_to_gold[m2]:
common_links += 1
num += len(c) * common_links / float(all_links)
dem += len(c)
return num, dem