diff --git a/perception/tensorrt_yolo/schema/tensortt_yolo.json b/perception/tensorrt_yolo/schema/tensortt_yolo.json new file mode 100644 index 0000000000000..0b4724078c994 --- /dev/null +++ b/perception/tensorrt_yolo/schema/tensortt_yolo.json @@ -0,0 +1,108 @@ +{ + "$schema": "http://json-schema.org/draft-07/schema#", + "title": "Parameters for tensorrt_yolo", + "type": "object", + "definitions": { + "tensorrt_yolo": { + "type": "object", + "properties": { + "num_anchors": { + "type": "number", + "default": [ + 10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, + 156.0, 198.0, 373.0, 326.0 + ], + "description": "The anchors to create bounding box candidates." + }, + "scale_x_y": { + "type": "number", + "default": [1.0, 1.0, 1.0], + "description": "scale parameter to eliminate grid sensitivity." + }, + "score_thresh": { + "type": "number", + "default": 0.1, + "description": "If the objectness score is less than this value, the object is ignored in yolo layer." + }, + "iou_thresh": { + "type": "number", + "default": 0.45, + "description": "The iou threshold for NMS method." + }, + "detections_per_im": { + "type": "number", + "default": 100, + "description": " The maximum detection number for one frame." + }, + "use_darknet_layer": { + "type": "boolean", + "default": true, + "description": "The flag to use yolo layer in darknet." + }, + "ignore_thresh": { + "type": "number", + "default": 0.5, + "description": "If the output score is less than this value, this object is ignored." + }, + "onnx_file": { + "type": "string", + "description": "The onnx file name for yolo model." + }, + "engine_file": { + "type": "string", + "description": "The tensorrt engine file name for yolo model." + }, + "label_file": { + "type": "string", + "description": "The label file with label names for detected objects written on it." + }, + "calib_image_directory": { + "type": "string", + "description": "The directory name including calibration images for int8 inference." + }, + "calib_cache_file": { + "type": "string", + "description": "The calibration cache file for int8 inference." + }, + "mode": { + "type": "string", + "default": "FP32", + "description": "The inference mode: FP32, FP16, INT8." + }, + "gpu_id": { + "type": "number", + "default": 0, + "description": "GPU device ID that runs the model." + } + }, + "required": [ + "num_anchors", + "scale_x_y", + "score_thresh", + "iou_thresh", + "detections_per_im", + "use_darknet_layer", + "ignore_thresh", + "onnx_file", + "engine_file", + "label_file", + "calib_image_directory", + "calib_cache_file", + "mode", + "gpu_id" + ] + } + }, + "properties": { + "/**": { + "type": "object", + "properties": { + "ros__parameters": { + "$ref": "#/definitions/tensorrt_yolo" + } + }, + "required": ["ros__parameters"] + } + }, + "required": ["/**"] +} diff --git a/perception/tensorrt_yolo/src/nodelet.cpp b/perception/tensorrt_yolo/src/nodelet.cpp index dcb65114ad88f..fdcd8bf12db72 100644 --- a/perception/tensorrt_yolo/src/nodelet.cpp +++ b/perception/tensorrt_yolo/src/nodelet.cpp @@ -50,9 +50,9 @@ TensorrtYoloNodelet::TensorrtYoloNodelet(const rclcpp::NodeOptions & options) std::string label_file = declare_parameter("label_file", ""); std::string calib_image_directory = declare_parameter("calib_image_directory", ""); std::string calib_cache_file = declare_parameter("calib_cache_file", ""); - std::string mode = declare_parameter("mode", "FP32"); - gpu_device_id_ = declare_parameter("gpu_id", 0); - yolo_config_.num_anchors = declare_parameter("num_anchors", 3); + std::string mode = declare_parameter("mode"); + gpu_device_id_ = declare_parameter("gpu_id"); + yolo_config_.num_anchors = declare_parameter("num_anchors"); auto anchors = declare_parameter( "anchors", std::vector{ 10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326}); @@ -61,11 +61,11 @@ TensorrtYoloNodelet::TensorrtYoloNodelet(const rclcpp::NodeOptions & options) auto scale_x_y = declare_parameter("scale_x_y", std::vector{1.0, 1.0, 1.0}); std::vector scale_x_y_float(scale_x_y.begin(), scale_x_y.end()); yolo_config_.scale_x_y = scale_x_y_float; - yolo_config_.score_thresh = declare_parameter("score_thresh", 0.1); - yolo_config_.iou_thresh = declare_parameter("iou_thresh", 0.45); - yolo_config_.detections_per_im = declare_parameter("detections_per_im", 100); - yolo_config_.use_darknet_layer = declare_parameter("use_darknet_layer", true); - yolo_config_.ignore_thresh = declare_parameter("ignore_thresh", 0.5); + yolo_config_.score_thresh = declare_parameter("score_thresh"); + yolo_config_.iou_thresh = declare_parameter("iou_thresh"); + yolo_config_.detections_per_im = declare_parameter("detections_per_im"); + yolo_config_.use_darknet_layer = declare_parameter("use_darknet_layer"); + yolo_config_.ignore_thresh = declare_parameter("ignore_thresh"); if (!yolo::set_cuda_device(gpu_device_id_)) { RCLCPP_ERROR(this->get_logger(), "Given GPU not exist or suitable");