-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdecomp_2d.f90
1710 lines (1426 loc) · 55.8 KB
/
decomp_2d.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!=======================================================================
! This is part of the 2DECOMP&FFT library
!
! 2DECOMP&FFT is a software framework for general-purpose 2D (pencil)
! decomposition. It also implements a highly scalable distributed
! three-dimensional Fast Fourier Transform (FFT).
!
! Copyright (C) 2009-2012 Ning Li, the Numerical Algorithms Group (NAG)
!
!=======================================================================
! This is the main 2D pencil decomposition module
module decomp_2d
use MPI
implicit none
private ! Make everything private unless declared public
#ifdef DOUBLE_PREC
integer, parameter, public :: mytype = KIND(0.0D0)
integer, parameter, public :: real_type = MPI_DOUBLE_PRECISION
integer, parameter, public :: complex_type = MPI_DOUBLE_COMPLEX
#else
integer, parameter, public :: mytype = KIND(0.0)
integer, parameter, public :: real_type = MPI_REAL
integer, parameter, public :: complex_type = MPI_COMPLEX
#endif
integer, save, public :: mytype_bytes
! some key global variables
integer, save, public :: nx_global, ny_global, nz_global ! global size
integer, save, public :: nrank ! local MPI rank
integer, save, public :: nproc ! total number of processors
! parameters for 2D Cartesian topology
integer, save, dimension(2) :: dims, coord
logical, save, dimension(2) :: periodic
integer, save, public :: DECOMP_2D_COMM_CART_X, &
DECOMP_2D_COMM_CART_Y, DECOMP_2D_COMM_CART_Z
integer, save :: DECOMP_2D_COMM_ROW, DECOMP_2D_COMM_COL
! define neighboring blocks (to be used in halo-cell support)
! first dimension 1=X-pencil, 2=Y-pencil, 3=Z-pencil
! second dimension 1=east, 2=west, 3=north, 4=south, 5=top, 6=bottom
integer, save, dimension(3,6) :: neighbour
! flags for periodic condition in three dimensions
logical, save :: periodic_x, periodic_y, periodic_z
#ifdef SHM
! derived type to store shared-memory info
TYPE, public :: SMP_INFO
integer MPI_COMM ! SMP associated with this communicator
integer NODE_ME ! rank in this communicator
integer NCPU ! size of this communicator
integer SMP_COMM ! communicator for SMP-node masters
integer CORE_COMM ! communicator for cores on SMP-node
integer SMP_ME ! SMP-node id starting from 1 ... NSMP
integer NSMP ! number of SMP-nodes in this communicator
integer CORE_ME ! core id starting from 1 ... NCORE
integer NCORE ! number of cores on this SMP-node
integer MAXCORE ! maximum no. cores on any SMP-node
integer N_SND ! size of SMP shared memory buffer
integer N_RCV ! size of SMP shared memory buffer
integer(8) SND_P ! SNDBUF address (cray pointer), for real
integer(8) RCV_P ! RCVBUF address (cray pointer), for real
integer(8) SND_P_c ! for complex
integer(8) RCV_P_c ! for complex
END TYPE SMP_INFO
#endif
! derived type to store decomposition info for a given global data size
TYPE, public :: DECOMP_INFO
! staring/ending index and size of data held by current processor
integer, dimension(3) :: xst, xen, xsz ! x-pencil
integer, dimension(3) :: yst, yen, ysz ! y-pencil
integer, dimension(3) :: zst, zen, zsz ! z-pencil
! in addition to local information, processors also need to know
! some global information for global communications to work
! how each dimension is distributed along pencils
integer, allocatable, dimension(:) :: &
x1dist, y1dist, y2dist, z2dist
! send/receive buffer counts and displacements for MPI_ALLTOALLV
integer, allocatable, dimension(:) :: &
x1cnts, y1cnts, y2cnts, z2cnts
integer, allocatable, dimension(:) :: &
x1disp, y1disp, y2disp, z2disp
! buffer counts for MPI_ALLTOALL: either for evenly distributed data
! or for padded-alltoall
integer :: x1count, y1count, y2count, z2count
! evenly distributed data
logical :: even
#ifdef SHM
! For shared-memory implementation
! one instance of this derived type for each communicator
! shared moemory info, such as which MPI rank belongs to which node
TYPE(SMP_INFO) :: ROW_INFO, COL_INFO
! shared send/recv buffers for ALLTOALLV
integer, allocatable, dimension(:) :: x1cnts_s, y1cnts_s, &
y2cnts_s, z2cnts_s
integer, allocatable, dimension(:) :: x1disp_s, y1disp_s, &
y2disp_s, z2disp_s
! A copy of original buffer displacement (will be overwriten)
integer, allocatable, dimension(:) :: x1disp_o, y1disp_o, &
y2disp_o, z2disp_o
#endif
END TYPE DECOMP_INFO
! main (default) decomposition information for global size nx*ny*nz
TYPE(DECOMP_INFO), save :: decomp_main
! staring/ending index and size of data held by current processor
! duplicate 'decomp_main', needed by apps to define data structure
integer, save, dimension(3), public :: xstart, xend, xsize ! x-pencil
integer, save, dimension(3), public :: ystart, yend, ysize ! y-pencil
integer, save, dimension(3), public :: zstart, zend, zsize ! z-pencil
! These are the buffers used by MPI_ALLTOALL(V) calls
integer, save :: decomp_buf_size = 0
real(mytype), allocatable, dimension(:) :: work1_r, work2_r
complex(mytype), allocatable, dimension(:) :: work1_c, work2_c
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! To define smaller arrays using every several mesh points
integer, save, dimension(3), public :: xszS,yszS,zszS,xstS,ystS,zstS,xenS,yenS,zenS
integer, save, dimension(3), public :: xszV,yszV,zszV,xstV,ystV,zstV,xenV,yenV,zenV
integer, save, dimension(3), public :: xszP,yszP,zszP,xstP,ystP,zstP,xenP,yenP,zenP
logical, save :: coarse_mesh_starts_from_1
integer, save :: iskipS, jskipS, kskipS
integer, save :: iskipV, jskipV, kskipV
integer, save :: iskipP, jskipP, kskipP
! public user routines
public :: decomp_2d_init, decomp_2d_finalize, &
transpose_x_to_y, transpose_y_to_z, &
transpose_z_to_y, transpose_y_to_x, &
#ifdef OCC
transpose_x_to_y_start, transpose_y_to_z_start, &
transpose_z_to_y_start, transpose_y_to_x_start, &
transpose_x_to_y_wait, transpose_y_to_z_wait, &
transpose_z_to_y_wait, transpose_y_to_x_wait, &
transpose_test, &
#endif
decomp_info_init, decomp_info_finalize, partition, &
init_coarser_mesh_statS,fine_to_coarseS,&
init_coarser_mesh_statV,fine_to_coarseV,&
init_coarser_mesh_statP,fine_to_coarseP,&
alloc_x, alloc_y, alloc_z, &
update_halo, decomp_2d_abort, &
get_decomp_info
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! These are routines to perform global data transpositions
!
! Four combinations are available, enough to cover all situations
! - transpose_x_to_y (X-pencil --> Y-pencil)
! - transpose_y_to_z (Y-pencil --> Z-pencil)
! - transpose_z_to_y (Z-pencil --> Y-pencil)
! - transpose_y_to_x (Y-pencil --> X-pencil)
!
! Generic interface provided here to support multiple data types
! - real and complex types supported through generic interface
! - single/double precision supported through pre-processing
! * see 'mytype' variable at the beginning
! - an optional argument can be supplied to transpose data whose
! global size is not the default nx*ny*nz
! * as the case in fft r2c/c2r interface
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
interface transpose_x_to_y
module procedure transpose_x_to_y_real
module procedure transpose_x_to_y_complex
end interface transpose_x_to_y
interface transpose_y_to_z
module procedure transpose_y_to_z_real
module procedure transpose_y_to_z_complex
end interface transpose_y_to_z
interface transpose_z_to_y
module procedure transpose_z_to_y_real
module procedure transpose_z_to_y_complex
end interface transpose_z_to_y
interface transpose_y_to_x
module procedure transpose_y_to_x_real
module procedure transpose_y_to_x_complex
end interface transpose_y_to_x
#ifdef OCC
interface transpose_x_to_y_start
module procedure transpose_x_to_y_real_start
module procedure transpose_x_to_y_complex_start
end interface transpose_x_to_y_start
interface transpose_y_to_z_start
module procedure transpose_y_to_z_real_start
module procedure transpose_y_to_z_complex_start
end interface transpose_y_to_z_start
interface transpose_z_to_y_start
module procedure transpose_z_to_y_real_start
module procedure transpose_z_to_y_complex_start
end interface transpose_z_to_y_start
interface transpose_y_to_x_start
module procedure transpose_y_to_x_real_start
module procedure transpose_y_to_x_complex_start
end interface transpose_y_to_x_start
interface transpose_x_to_y_wait
module procedure transpose_x_to_y_real_wait
module procedure transpose_x_to_y_complex_wait
end interface transpose_x_to_y_wait
interface transpose_y_to_z_wait
module procedure transpose_y_to_z_real_wait
module procedure transpose_y_to_z_complex_wait
end interface transpose_y_to_z_wait
interface transpose_z_to_y_wait
module procedure transpose_z_to_y_real_wait
module procedure transpose_z_to_y_complex_wait
end interface transpose_z_to_y_wait
interface transpose_y_to_x_wait
module procedure transpose_y_to_x_real_wait
module procedure transpose_y_to_x_complex_wait
end interface transpose_y_to_x_wait
#endif
interface update_halo
module procedure update_halo_real
module procedure update_halo_complex
end interface update_halo
interface alloc_x
module procedure alloc_x_real
module procedure alloc_x_complex
end interface alloc_x
interface alloc_y
module procedure alloc_y_real
module procedure alloc_y_complex
end interface alloc_y
interface alloc_z
module procedure alloc_z_real
module procedure alloc_z_complex
end interface alloc_z
contains
#ifdef SHM_DEBUG
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! For debugging, print the shared-memory structure
subroutine print_smp_info(s)
TYPE(SMP_INFO) :: s
write(10,*) 'size of current communicator:', s%NCPU
write(10,*) 'rank in current communicator:', s%NODE_ME
write(10,*) 'number of SMP-nodes in this communicator:', s%NSMP
write(10,*) 'SMP-node id (1 ~ NSMP):', s%SMP_ME
write(10,*) 'NCORE - number of cores on this SMP-node', s%NCORE
write(10,*) 'core id (1 ~ NCORE):', s%CORE_ME
write(10,*) 'maximum no. cores on any SMP-node:', s%MAXCORE
write(10,*) 'size of SMP shared memory SND buffer:', s%N_SND
write(10,*) 'size of SMP shared memory RCV buffer:', s%N_RCV
end subroutine print_smp_info
#endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Routine to be called by applications to initialise this library
! INPUT:
! nx, ny, nz - global data dimension
! p_row, p_col - 2D processor grid
! OUTPUT:
! all internal data structures initialised properly
! library ready to use
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine decomp_2d_init(nx,ny,nz,p_row,p_col,periodic_bc)
implicit none
integer, intent(IN) :: nx,ny,nz,p_row,p_col
logical, dimension(3), intent(IN), optional :: periodic_bc
integer :: errorcode, ierror, row, col
#ifdef SHM_DEBUG
character(len=80) fname
#endif
nx_global = nx
ny_global = ny
nz_global = nz
if (present(periodic_bc)) then
periodic_x = periodic_bc(1)
periodic_y = periodic_bc(2)
periodic_z = periodic_bc(3)
else
periodic_x = .false.
periodic_y = .false.
periodic_z = .false.
end if
call MPI_COMM_RANK(MPI_COMM_WORLD,nrank,ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD,nproc,ierror)
if (p_row==0 .and. p_col==0) then
! determine the best 2D processor grid
call best_2d_grid(nproc, row, col)
else
if (nproc /= p_row*p_col) then
errorcode = 1
call decomp_2d_abort(errorcode, &
'Invalid 2D processor grid - nproc /= p_row*p_col')
else
row = p_row
col = p_col
end if
end if
! Create 2D Catersian topology
! Note that in order to support periodic B.C. in the halo-cell code,
! need to create multiple topology objects: DECOMP_2D_COMM_CART_?,
! corresponding to three pencil orientations. They contain almost
! identical topological information but allow different combinations
! of periodic conditions.
dims(1) = row
dims(2) = col
periodic(1) = periodic_y
periodic(2) = periodic_z
call MPI_CART_CREATE(MPI_COMM_WORLD,2,dims,periodic, &
.false., & ! do not reorder rank
DECOMP_2D_COMM_CART_X, ierror)
periodic(1) = periodic_x
periodic(2) = periodic_z
call MPI_CART_CREATE(MPI_COMM_WORLD,2,dims,periodic, &
.false., DECOMP_2D_COMM_CART_Y, ierror)
periodic(1) = periodic_x
periodic(2) = periodic_y
call MPI_CART_CREATE(MPI_COMM_WORLD,2,dims,periodic, &
.false., DECOMP_2D_COMM_CART_Z, ierror)
call MPI_CART_COORDS(DECOMP_2D_COMM_CART_X,nrank,2,coord,ierror)
! derive communicators defining sub-groups for ALLTOALL(V)
call MPI_CART_SUB(DECOMP_2D_COMM_CART_X,(/.true.,.false./), &
DECOMP_2D_COMM_COL,ierror)
call MPI_CART_SUB(DECOMP_2D_COMM_CART_X,(/.false.,.true./), &
DECOMP_2D_COMM_ROW,ierror)
! gather information for halo-cell support code
call init_neighbour
! actually generate all 2D decomposition information
call decomp_info_init(nx,ny,nz,decomp_main)
! make a copy of the decomposition information associated with the
! default global size in these global variables so applications can
! use them to create data structures
xstart = decomp_main%xst
ystart = decomp_main%yst
zstart = decomp_main%zst
xend = decomp_main%xen
yend = decomp_main%yen
zend = decomp_main%zen
xsize = decomp_main%xsz
ysize = decomp_main%ysz
zsize = decomp_main%zsz
#ifdef SHM_DEBUG
! print out shared-memory information
write(fname,99) nrank
99 format('log',I2.2)
open(10,file=fname)
write(10,*)'I am mpi rank ', nrank, 'Total ranks ', nproc
write(10,*)' '
write(10,*)'Global data size:'
write(10,*)'nx*ny*nz', nx,ny,nz
write(10,*)' '
write(10,*)'2D processor grid:'
write(10,*)'p_row*p_col:', dims(1), dims(2)
write(10,*)' '
write(10,*)'Portion of global data held locally:'
write(10,*)'xsize:',xsize
write(10,*)'ysize:',ysize
write(10,*)'zsize:',zsize
write(10,*)' '
write(10,*)'How pensils are to be divided and sent in alltoallv:'
write(10,*)'x1dist:',decomp_main%x1dist
write(10,*)'y1dist:',decomp_main%y1dist
write(10,*)'y2dist:',decomp_main%y2dist
write(10,*)'z2dist:',decomp_main%z2dist
write(10,*)' '
write(10,*)'######Shared buffer set up after this point######'
write(10,*)' '
write(10,*) 'col communicator detais:'
call print_smp_info(decomp_main%COL_INFO)
write(10,*)' '
write(10,*) 'row communicator detais:'
call print_smp_info(decomp_main%ROW_INFO)
write(10,*)' '
write(10,*)'Buffer count and dispalcement of per-core buffers'
write(10,*)'x1cnts:',decomp_main%x1cnts
write(10,*)'y1cnts:',decomp_main%y1cnts
write(10,*)'y2cnts:',decomp_main%y2cnts
write(10,*)'z2cnts:',decomp_main%z2cnts
write(10,*)'x1disp:',decomp_main%x1disp
write(10,*)'y1disp:',decomp_main%y1disp
write(10,*)'y2disp:',decomp_main%y2disp
write(10,*)'z2disp:',decomp_main%z2disp
write(10,*)' '
write(10,*)'Buffer count and dispalcement of shared buffers'
write(10,*)'x1cnts:',decomp_main%x1cnts_s
write(10,*)'y1cnts:',decomp_main%y1cnts_s
write(10,*)'y2cnts:',decomp_main%y2cnts_s
write(10,*)'z2cnts:',decomp_main%z2cnts_s
write(10,*)'x1disp:',decomp_main%x1disp_s
write(10,*)'y1disp:',decomp_main%y1disp_s
write(10,*)'y2disp:',decomp_main%y2disp_s
write(10,*)'z2disp:',decomp_main%z2disp_s
write(10,*)' '
close(10)
#endif
! determine the number of bytes per float number
! do not use 'mytype' which is compiler dependent
! also possible to use inquire(iolength=...)
call MPI_TYPE_SIZE(real_type,mytype_bytes,ierror)
#ifdef EVEN
if (nrank==0) write(*,*) 'Padded ALLTOALL optimisation on'
#endif
return
end subroutine decomp_2d_init
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Routine to be called by applications to clean things up
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine decomp_2d_finalize
implicit none
call decomp_info_finalize(decomp_main)
decomp_buf_size = 0
deallocate(work1_r, work2_r, work1_c, work2_c)
return
end subroutine decomp_2d_finalize
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Return the default decomposition object
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine get_decomp_info(decomp)
implicit none
TYPE(DECOMP_INFO), intent(OUT) :: decomp
decomp = decomp_main
return
end subroutine get_decomp_info
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Advanced Interface allowing applications to define globle domain of
! any size, distribute it, and then transpose data among pencils.
! - generate 2D decomposition details as defined in DECOMP_INFO
! - the default global data size is nx*ny*nz
! - a different global size nx/2+1,ny,nz is used in FFT r2c/c2r
! - multiple global sizes can co-exist in one application, each
! using its own DECOMP_INFO object
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine decomp_info_init(nx,ny,nz,decomp)
implicit none
integer, intent(IN) :: nx,ny,nz
TYPE(DECOMP_INFO), intent(INOUT) :: decomp
integer :: buf_size, status, errorcode
! verify the global size can actually be distributed as pencils
if (nx<dims(1) .or. ny<dims(1) .or. ny<dims(2) .or. nz<dims(2)) then
errorcode = 6
call decomp_2d_abort(errorcode, &
'Invalid 2D processor grid. ' // &
'Make sure that min(nx,ny) >= p_row and ' // &
'min(ny,nz) >= p_col')
end if
if (mod(nx,dims(1))==0 .and. mod(ny,dims(1))==0 .and. &
mod(ny,dims(2))==0 .and. mod(nz,dims(2))==0) then
decomp%even = .true.
else
decomp%even = .false.
end if
! distribute mesh points
allocate(decomp%x1dist(0:dims(1)-1),decomp%y1dist(0:dims(1)-1), &
decomp%y2dist(0:dims(2)-1),decomp%z2dist(0:dims(2)-1))
call get_dist(nx,ny,nz,decomp)
! generate partition information - starting/ending index etc.
call partition(nx, ny, nz, (/ 1,2,3 /), &
decomp%xst, decomp%xen, decomp%xsz)
call partition(nx, ny, nz, (/ 2,1,3 /), &
decomp%yst, decomp%yen, decomp%ysz)
call partition(nx, ny, nz, (/ 2,3,1 /), &
decomp%zst, decomp%zen, decomp%zsz)
! prepare send/receive buffer displacement and count for ALLTOALL(V)
allocate(decomp%x1cnts(0:dims(1)-1),decomp%y1cnts(0:dims(1)-1), &
decomp%y2cnts(0:dims(2)-1),decomp%z2cnts(0:dims(2)-1))
allocate(decomp%x1disp(0:dims(1)-1),decomp%y1disp(0:dims(1)-1), &
decomp%y2disp(0:dims(2)-1),decomp%z2disp(0:dims(2)-1))
call prepare_buffer(decomp)
#ifdef SHM
! prepare shared-memory information if required
call decomp_info_init_shm(decomp)
#endif
! allocate memory for the MPI_ALLTOALL(V) buffers
! define the buffers globally for performance reason
buf_size = max(decomp%xsz(1)*decomp%xsz(2)*decomp%xsz(3), &
max(decomp%ysz(1)*decomp%ysz(2)*decomp%ysz(3), &
decomp%zsz(1)*decomp%zsz(2)*decomp%zsz(3)) )
#ifdef EVEN
! padded alltoall optimisation may need larger buffer space
buf_size = max(buf_size, &
max(decomp%x1count*dims(1),decomp%y2count*dims(2)) )
#endif
! check if additional memory is required
! *** TODO: consider how to share the real/complex buffers
if (buf_size > decomp_buf_size) then
decomp_buf_size = buf_size
if (allocated(work1_r)) deallocate(work1_r)
if (allocated(work2_r)) deallocate(work2_r)
if (allocated(work1_c)) deallocate(work1_c)
if (allocated(work2_c)) deallocate(work2_c)
allocate(work1_r(buf_size), STAT=status)
allocate(work2_r(buf_size), STAT=status)
allocate(work1_c(buf_size), STAT=status)
allocate(work2_c(buf_size), STAT=status)
if (status /= 0) then
errorcode = 2
call decomp_2d_abort(errorcode, &
'Out of memory when allocating 2DECOMP workspace')
end if
end if
return
end subroutine decomp_info_init
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Release memory associated with a DECOMP_INFO object
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine decomp_info_finalize(decomp)
implicit none
TYPE(DECOMP_INFO), intent(INOUT) :: decomp
deallocate(decomp%x1dist,decomp%y1dist,decomp%y2dist,decomp%z2dist)
deallocate(decomp%x1cnts,decomp%y1cnts,decomp%y2cnts,decomp%z2cnts)
deallocate(decomp%x1disp,decomp%y1disp,decomp%y2disp,decomp%z2disp)
#ifdef SHM
deallocate(decomp%x1disp_o,decomp%y1disp_o,decomp%y2disp_o, &
decomp%z2disp_o)
deallocate(decomp%x1cnts_s,decomp%y1cnts_s,decomp%y2cnts_s, &
decomp%z2cnts_s)
deallocate(decomp%x1disp_s,decomp%y1disp_s,decomp%y2disp_s, &
decomp%z2disp_s)
#endif
return
end subroutine decomp_info_finalize
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Coarser mesh support for statistic
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine init_coarser_mesh_statS(i_skip,j_skip,k_skip,from1)
implicit none
integer, intent(IN) :: i_skip,j_skip,k_skip
logical, intent(IN) :: from1 ! .true. - save 1,n+1,2n+1...
! .false. - save n,2n,3n...
integer, dimension(3) :: skip
integer :: i
coarse_mesh_starts_from_1 = from1
iskipS = i_skip
jskipS = j_skip
kskipS = k_skip
skip(1)=iskipS
skip(2)=jskipS
skip(3)=kskipS
do i=1,3
if (from1) then
xstS(i) = (xstart(i)+skip(i)-1)/skip(i)
if (mod(xstart(i)+skip(i)-1,skip(i))/=0) xstS(i)=xstS(i)+1
xenS(i) = (xend(i)+skip(i)-1)/skip(i)
else
xstS(i) = xstart(i)/skip(i)
if (mod(xstart(i),skip(i))/=0) xstS(i)=xstS(i)+1
xenS(i) = xend(i)/skip(i)
end if
xszS(i) = xenS(i)-xstS(i)+1
end do
do i=1,3
if (from1) then
ystS(i) = (ystart(i)+skip(i)-1)/skip(i)
if (mod(ystart(i)+skip(i)-1,skip(i))/=0) ystS(i)=ystS(i)+1
yenS(i) = (yend(i)+skip(i)-1)/skip(i)
else
ystS(i) = ystart(i)/skip(i)
if (mod(ystart(i),skip(i))/=0) ystS(i)=ystS(i)+1
yenS(i) = yend(i)/skip(i)
end if
yszS(i) = yenS(i)-ystS(i)+1
end do
do i=1,3
if (from1) then
zstS(i) = (zstart(i)+skip(i)-1)/skip(i)
if (mod(zstart(i)+skip(i)-1,skip(i))/=0) zstS(i)=zstS(i)+1
zenS(i) = (zend(i)+skip(i)-1)/skip(i)
else
zstS(i) = zstart(i)/skip(i)
if (mod(zstart(i),skip(i))/=0) zstS(i)=zstS(i)+1
zenS(i) = zend(i)/skip(i)
end if
zszS(i) = zenS(i)-zstS(i)+1
end do
return
end subroutine init_coarser_mesh_statS
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Coarser mesh support for visualization
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine init_coarser_mesh_statV(i_skip,j_skip,k_skip,from1)
implicit none
integer, intent(IN) :: i_skip,j_skip,k_skip
logical, intent(IN) :: from1 ! .true. - save 1,n+1,2n+1...
! .false. - save n,2n,3n...
integer, dimension(3) :: skip
integer :: i
coarse_mesh_starts_from_1 = from1
iskipV = i_skip
jskipV = j_skip
kskipV = k_skip
skip(1)=iskipV
skip(2)=jskipV
skip(3)=kskipV
do i=1,3
if (from1) then
xstV(i) = (xstart(i)+skip(i)-1)/skip(i)
if (mod(xstart(i)+skip(i)-1,skip(i))/=0) xstV(i)=xstV(i)+1
xenV(i) = (xend(i)+skip(i)-1)/skip(i)
else
xstV(i) = xstart(i)/skip(i)
if (mod(xstart(i),skip(i))/=0) xstV(i)=xstV(i)+1
xenV(i) = xend(i)/skip(i)
end if
xszV(i) = xenV(i)-xstV(i)+1
end do
do i=1,3
if (from1) then
ystV(i) = (ystart(i)+skip(i)-1)/skip(i)
if (mod(ystart(i)+skip(i)-1,skip(i))/=0) ystV(i)=ystV(i)+1
yenV(i) = (yend(i)+skip(i)-1)/skip(i)
else
ystV(i) = ystart(i)/skip(i)
if (mod(ystart(i),skip(i))/=0) ystV(i)=ystV(i)+1
yenV(i) = yend(i)/skip(i)
end if
yszV(i) = yenV(i)-ystV(i)+1
end do
do i=1,3
if (from1) then
zstV(i) = (zstart(i)+skip(i)-1)/skip(i)
if (mod(zstart(i)+skip(i)-1,skip(i))/=0) zstV(i)=zstV(i)+1
zenV(i) = (zend(i)+skip(i)-1)/skip(i)
else
zstV(i) = zstart(i)/skip(i)
if (mod(zstart(i),skip(i))/=0) zstV(i)=zstV(i)+1
zenV(i) = zend(i)/skip(i)
end if
zszV(i) = zenV(i)-zstV(i)+1
end do
return
end subroutine init_coarser_mesh_statV
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Coarser mesh support for probe
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine init_coarser_mesh_statP(i_skip,j_skip,k_skip,from1)
implicit none
integer, intent(IN) :: i_skip,j_skip,k_skip
logical, intent(IN) :: from1 ! .true. - save 1,n+1,2n+1...
! .false. - save n,2n,3n...
integer, dimension(3) :: skip
integer :: i
coarse_mesh_starts_from_1 = from1
iskipP = i_skip
jskipP = j_skip
kskipP = k_skip
skip(1)=iskipP
skip(2)=jskipP
skip(3)=kskipP
do i=1,3
if (from1) then
xstP(i) = (xstart(i)+skip(i)-1)/skip(i)
if (mod(xstart(i)+skip(i)-1,skip(i))/=0) xstP(i)=xstP(i)+1
xenP(i) = (xend(i)+skip(i)-1)/skip(i)
else
xstP(i) = xstart(i)/skip(i)
if (mod(xstart(i),skip(i))/=0) xstP(i)=xstP(i)+1
xenP(i) = xend(i)/skip(i)
end if
xszP(i) = xenP(i)-xstP(i)+1
end do
do i=1,3
if (from1) then
ystP(i) = (ystart(i)+skip(i)-1)/skip(i)
if (mod(ystart(i)+skip(i)-1,skip(i))/=0) ystP(i)=ystP(i)+1
yenP(i) = (yend(i)+skip(i)-1)/skip(i)
else
ystP(i) = ystart(i)/skip(i)
if (mod(ystart(i),skip(i))/=0) ystP(i)=ystP(i)+1
yenP(i) = yend(i)/skip(i)
end if
yszP(i) = yenP(i)-ystP(i)+1
end do
do i=1,3
if (from1) then
zstP(i) = (zstart(i)+skip(i)-1)/skip(i)
if (mod(zstart(i)+skip(i)-1,skip(i))/=0) zstP(i)=zstP(i)+1
zenP(i) = (zend(i)+skip(i)-1)/skip(i)
else
zstP(i) = zstart(i)/skip(i)
if (mod(zstart(i),skip(i))/=0) zstP(i)=zstP(i)+1
zenP(i) = zend(i)/skip(i)
end if
zszP(i) = zenP(i)-zstP(i)+1
end do
return
end subroutine init_coarser_mesh_statP
! Copy data from a fine-resolution array to a coarse one for statistic
subroutine fine_to_coarseS(ipencil,var_fine,var_coarse)
implicit none
real(mytype), dimension(:,:,:) :: var_fine
real(mytype), dimension(:,:,:) :: var_coarse
integer, intent(IN) :: ipencil
real(mytype), allocatable, dimension(:,:,:) :: wk, wk2
integer :: i,j,k
if (ipencil==1) then
allocate(wk(xstS(1):xenS(1),xstS(2):xenS(2),xstS(3):xenS(3)))
allocate(wk2(xstart(1):xend(1),xstart(2):xend(2),xstart(3):xend(3)))
wk2=var_fine
if (coarse_mesh_starts_from_1) then
do k=xstS(3),xenS(3)
do j=xstS(2),xenS(2)
do i=xstS(1),xenS(1)
wk(i,j,k) = wk2((i-1)*iskipS+1,(j-1)*jskipS+1,(k-1)*kskipS+1)
end do
end do
end do
else
do k=xstS(3),xenS(3)
do j=xstS(2),xenS(2)
do i=xstS(1),xenS(1)
wk(i,j,k) = wk2(i*iskipS,j*jskipS,k*kskipS)
end do
end do
end do
end if
var_coarse=wk
else if (ipencil==2) then
allocate(wk(ystS(1):yenS(1),ystS(2):yenS(2),ystS(3):yenS(3)))
allocate(wk2(ystart(1):yend(1),ystart(2):yend(2),ystart(3):yend(3)))
wk2=var_fine
if (coarse_mesh_starts_from_1) then
do k=ystS(3),yenS(3)
do j=ystS(2),yenS(2)
do i=ystS(1),yenS(1)
wk(i,j,k) = wk2((i-1)*iskipS+1,(j-1)*jskipS+1,(k-1)*kskipS+1)
end do
end do
end do
else
do k=ystS(3),yenS(3)
do j=ystS(2),yenS(2)
do i=ystS(1),yenS(1)
wk(i,j,k) = wk2(i*iskipS,j*jskipS,k*kskipS)
end do
end do
end do
end if
var_coarse=wk
else if (ipencil==3) then
allocate(wk(zstS(1):zenS(1),zstS(2):zenS(2),zstS(3):zenS(3)))
allocate(wk2(zstart(1):zend(1),zstart(2):zend(2),zstart(3):zend(3)))
wk2=var_fine
if (coarse_mesh_starts_from_1) then
do k=zstS(3),zenS(3)
do j=zstS(2),zenS(2)
do i=zstS(1),zenS(1)
wk(i,j,k) = wk2((i-1)*iskipS+1,(j-1)*jskipS+1,(k-1)*kskipS+1)
end do
end do
end do
else
do k=zstS(3),zenS(3)
do j=zstS(2),zenS(2)
do i=zstS(1),zenS(1)
wk(i,j,k) = wk2(i*iskipS,j*jskipS,k*kskipS)
end do
end do
end do
end if
var_coarse=wk
end if
deallocate(wk,wk2)
return
end subroutine fine_to_coarseS
! Copy data from a fine-resolution array to a coarse one for visualization
subroutine fine_to_coarseV(ipencil,var_fine,var_coarse)
implicit none
real(mytype), dimension(:,:,:) :: var_fine
real(mytype), dimension(:,:,:) :: var_coarse
integer, intent(IN) :: ipencil
real(mytype), allocatable, dimension(:,:,:) :: wk, wk2
integer :: i,j,k
if (ipencil==1) then
allocate(wk(xstV(1):xenV(1),xstV(2):xenV(2),xstV(3):xenV(3)))
allocate(wk2(xstart(1):xend(1),xstart(2):xend(2),xstart(3):xend(3)))
wk2=var_fine
if (coarse_mesh_starts_from_1) then
do k=xstV(3),xenV(3)
do j=xstV(2),xenV(2)
do i=xstV(1),xenV(1)
wk(i,j,k) = wk2((i-1)*iskipV+1,(j-1)*jskipV+1,(k-1)*kskipV+1)
end do
end do
end do
else
do k=xstV(3),xenV(3)
do j=xstV(2),xenV(2)
do i=xstV(1),xenV(1)
wk(i,j,k) = wk2(i*iskipV,j*jskipV,k*kskipV)
end do
end do
end do
end if
var_coarse=wk
else if (ipencil==2) then
allocate(wk(ystV(1):yenV(1),ystV(2):yenV(2),ystV(3):yenV(3)))
allocate(wk2(ystart(1):yend(1),ystart(2):yend(2),ystart(3):yend(3)))
wk2=var_fine
if (coarse_mesh_starts_from_1) then
do k=ystV(3),yenV(3)
do j=ystV(2),yenV(2)
do i=ystV(1),yenV(1)
wk(i,j,k) = wk2((i-1)*iskipV+1,(j-1)*jskipV+1,(k-1)*kskipV+1)
end do
end do
end do
else
do k=ystV(3),yenV(3)
do j=ystV(2),yenV(2)
do i=ystV(1),yenV(1)
wk(i,j,k) = wk2(i*iskipV,j*jskipV,k*kskipV)
end do
end do
end do
end if
var_coarse=wk
else if (ipencil==3) then
allocate(wk(zstV(1):zenV(1),zstV(2):zenV(2),zstV(3):zenV(3)))
allocate(wk2(zstart(1):zend(1),zstart(2):zend(2),zstart(3):zend(3)))
wk2=var_fine
if (coarse_mesh_starts_from_1) then
do k=zstV(3),zenV(3)
do j=zstV(2),zenV(2)
do i=zstV(1),zenV(1)
wk(i,j,k) = wk2((i-1)*iskipV+1,(j-1)*jskipV+1,(k-1)*kskipV+1)
end do
end do
end do
else
do k=zstV(3),zenV(3)
do j=zstV(2),zenV(2)
do i=zstV(1),zenV(1)
wk(i,j,k) = wk2(i*iskipV,j*jskipV,k*kskipV)
end do
end do
end do
end if
var_coarse=wk
end if
deallocate(wk,wk2)
return
end subroutine fine_to_coarseV
! Copy data from a fine-resolution array to a coarse one for probe
subroutine fine_to_coarseP(ipencil,var_fine,var_coarse)
implicit none
real(mytype), dimension(:,:,:) :: var_fine
real(mytype), dimension(:,:,:) :: var_coarse
integer, intent(IN) :: ipencil
real(mytype), allocatable, dimension(:,:,:) :: wk, wk2
integer :: i,j,k
if (ipencil==1) then
allocate(wk(xstP(1):xenP(1),xstP(2):xenP(2),xstP(3):xenP(3)))
allocate(wk2(xstart(1):xend(1),xstart(2):xend(2),xstart(3):xend(3)))
wk2=var_fine
if (coarse_mesh_starts_from_1) then
do k=xstP(3),xenP(3)
do j=xstP(2),xenP(2)
do i=xstP(1),xenP(1)
wk(i,j,k) = wk2((i-1)*iskipP+1,(j-1)*jskipP+1,(k-1)*kskipP+1)
end do
end do
end do
else
do k=xstP(3),xenP(3)
do j=xstP(2),xenP(2)
do i=xstP(1),xenP(1)
wk(i,j,k) = wk2(i*iskipP,j*jskipP,k*kskipP)