-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnext.py
176 lines (139 loc) · 5.91 KB
/
resnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import math
from functools import partial
__all__ = ['ResNeXt', 'resnet50', 'resnet101']
def conv3x3x3(in_planes, out_planes, stride=1):
# 3x3x3 convolution with padding
return nn.Conv3d(in_planes, out_planes, kernel_size=3,
stride=stride, padding=1, bias=False)
def downsample_basic_block(x, planes, stride):
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
zero_pads = torch.Tensor(out.size(0), planes - out.size(1),
out.size(2), out.size(3),
out.size(4)).zero_()
if isinstance(out.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = Variable(torch.cat([out.data, zero_pads], dim=1))
return out
class ResNeXtBottleneck(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, cardinality, stride=1, downsample=None):
super(ResNeXtBottleneck, self).__init__()
mid_planes = cardinality * int(planes / 32)
self.conv1 = nn.Conv3d(inplanes, mid_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm3d(mid_planes)
self.conv2 = nn.Conv3d(mid_planes, mid_planes, kernel_size=3, stride=stride,
padding=1, groups=cardinality, bias=False)
self.bn2 = nn.BatchNorm3d(mid_planes)
self.conv3 = nn.Conv3d(mid_planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm3d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
def __init__(self, block, layers, sample_size, sample_duration, shortcut_type='B', cardinality=32, num_classes=400, last_fc=True):
self.last_fc = last_fc
self.inplanes = 64
super(ResNeXt, self).__init__()
self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2),
padding=(3, 3, 3), bias=False)
self.bn1 = nn.BatchNorm3d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.layer1 = self._make_layer(block, 128, layers[0], shortcut_type, cardinality)
self.layer2 = self._make_layer(block, 256, layers[1], shortcut_type, cardinality, stride=2)
self.layer3 = self._make_layer(block, 512, layers[2], shortcut_type, cardinality, stride=2)
self.layer4 = self._make_layer(block, 1024, layers[3], shortcut_type, cardinality, stride=2)
last_duration = math.ceil(sample_duration / 16)
last_size = math.ceil(sample_size / 32)
self.avgpool = nn.AvgPool3d((last_duration, last_size, last_size), stride=1)
self.fc = nn.Linear(cardinality * 32 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, shortcut_type, cardinality, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
if shortcut_type == 'A':
downsample = partial(downsample_basic_block,
planes=planes * block.expansion,
stride=stride)
else:
downsample = nn.Sequential(
nn.Conv3d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm3d(planes * block.expansion)
)
layers = []
layers.append(block(self.inplanes, planes, cardinality, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, cardinality))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
if self.last_fc:
x = self.fc(x)
return x
def get_fine_tuning_parameters(model, ft_begin_index):
if ft_begin_index == 0:
return model.parameters()
ft_module_names = []
for i in range(ft_begin_index, 5):
ft_module_names.append('layer{}'.format(ft_begin_index))
ft_module_names.append('fc')
parameters = []
for k, v in model.named_parameters():
for ft_module in ft_module_names:
if ft_module in k:
parameters.append({'params': v})
break
else:
parameters.append({'params': v, 'lr': 0.0})
return parameters
def resnet50(**kwargs):
"""Constructs a ResNet-50 model.
"""
model = ResNeXt(ResNeXtBottleneck, [3, 4, 6, 3], **kwargs)
return model
def resnet101(**kwargs):
"""Constructs a ResNet-101 model.
"""
model = ResNeXt(ResNeXtBottleneck, [3, 4, 23, 3], **kwargs)
return model
def resnet152(**kwargs):
"""Constructs a ResNet-101 model.
"""
model = ResNeXt(ResNeXtBottleneck, [3, 8, 36, 3], **kwargs)
return model