-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_for_finetuning.py
275 lines (219 loc) · 9.75 KB
/
engine_for_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import math
import sys
from typing import Iterable, Optional
import torch
import torch.nn as nn
from timm.utils import accuracy
from trainer.vis_query_loss import VisQueryLoss
import utils
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
max_norm: float = 0,
model_ema: Optional[torch.nn.Module] = None,
log_writer=None,
start_steps=None,
lr_schedule_values=None,
wd_schedule_values=None,
num_training_steps_per_epoch=None,
update_freq=None,
ch_names=None,
is_binary=True):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
# 初始化损失函数
criterion = VisQueryLoss().to(device)
optimizer.zero_grad()
for data_iter_step, batch in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
if step >= num_training_steps_per_epoch:
continue
it = start_steps + step # global training iteration
# 更新学习率
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
# 将数据移到设备上
batch = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
# 前向传播
with torch.cuda.amp.autocast():
outputs = model(batch['table_eeg'], batch['query_eeg'], batch['table'])
loss, loss_dict = criterion(outputs, batch)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
# 反向传播
loss /= update_freq
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
torch.cuda.synchronize()
# 记录损失
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# 记录各个组件的损失
for k, v in loss_dict.items():
metric_logger.update(**{k: v.item()})
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
log_writer.update(lr=optimizer.param_groups[0]["lr"], head="opt")
log_writer.set_step()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, header='Test:', ch_names=None, metrics=None):
criterion = VisQueryLoss().to(device)
metric_logger = utils.MetricLogger(delimiter=" ")
# 切换到评估模式
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
# 将数据移到设备上
batch = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()}
# 前向传播
with torch.cuda.amp.autocast():
outputs = model(batch['table_eeg'], batch['query_eeg'], batch['table'])
loss, loss_dict = criterion(outputs, batch)
# 计算评估指标
if metrics:
for metric in metrics:
if metric == 'accuracy':
acc = compute_accuracy(outputs, batch)
metric_logger.update(accuracy=acc)
elif metric == 'precision':
prec = compute_precision(outputs, batch)
metric_logger.update(precision=prec)
elif metric == 'recall':
rec = compute_recall(outputs, batch)
metric_logger.update(recall=rec)
elif metric == 'f1':
f1 = compute_f1(outputs, batch)
metric_logger.update(f1=f1)
metric_logger.update(loss=loss.item())
# 记录各个组件的损失
for k, v in loss_dict.items():
metric_logger.update(**{k: v.item()})
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Loss {losses.global_avg:.3f}'.format(losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def compute_accuracy(outputs, targets):
"""计算预测准确率
分别计算:
1. 图表类型预测准确率
2. SQL关键字预测准确率
3. 表格列选择准确率
"""
accuracies = {}
# 1. 图表类型准确率
chart_pred = outputs['chart_type'].argmax(dim=1)
chart_true = targets['chart_type']
chart_acc = (chart_pred == chart_true).float().mean()
accuracies['chart_acc'] = chart_acc.item()
# 2. SQL关键字准确率
keyword_pred = (outputs['keyword_logits'] > 0).float()
keyword_true = targets['keyword_labels']
keyword_acc = (keyword_pred == keyword_true).float().mean()
accuracies['keyword_acc'] = keyword_acc.item()
# 3. 表格列选择准确率
column_pred = (outputs['column_logits'] > 0).float()
column_true = targets['value_labels']
column_acc = (column_pred == column_true).float().mean()
accuracies['column_acc'] = column_acc.item()
# 综合准确率
accuracies['total_acc'] = (chart_acc + keyword_acc + column_acc) / 3
return accuracies
def compute_precision(outputs, targets):
"""计算精确率
分别计算:
1. SQL关键字预测精确率
2. 表格列选择精确率
"""
precisions = {}
# 1. SQL关键字精确率
keyword_pred = (outputs['keyword_logits'] > 0).float()
keyword_true = targets['keyword_labels']
keyword_tp = (keyword_pred * keyword_true).sum()
keyword_fp = (keyword_pred * (1 - keyword_true)).sum()
keyword_precision = keyword_tp / (keyword_tp + keyword_fp + 1e-8)
precisions['keyword_precision'] = keyword_precision.item()
# 2. 表格列选择精确率
column_pred = (outputs['column_logits'] > 0).float()
column_true = targets['value_labels']
column_tp = (column_pred * column_true).sum()
column_fp = (column_pred * (1 - column_true)).sum()
column_precision = column_tp / (column_tp + column_fp + 1e-8)
precisions['column_precision'] = column_precision.item()
return precisions
def compute_recall(outputs, targets):
"""计算召回率
分别计算:
1. SQL关键字预测召回率
2. 表格列选择召回率
"""
recalls = {}
# 1. SQL关键字召回率
keyword_pred = (outputs['keyword_logits'] > 0).float()
keyword_true = targets['keyword_labels']
keyword_tp = (keyword_pred * keyword_true).sum()
keyword_fn = ((1 - keyword_pred) * keyword_true).sum()
keyword_recall = keyword_tp / (keyword_tp + keyword_fn + 1e-8)
recalls['keyword_recall'] = keyword_recall.item()
# 2. 表格列选择召回率
column_pred = (outputs['column_logits'] > 0).float()
column_true = targets['value_labels']
column_tp = (column_pred * column_true).sum()
column_fn = ((1 - column_pred) * column_true).sum()
column_recall = column_tp / (column_tp + column_fn + 1e-8)
recalls['column_recall'] = column_recall.item()
return recalls
def compute_f1(outputs, targets):
"""计算F1分数"""
precisions = compute_precision(outputs, targets)
recalls = compute_recall(outputs, targets)
f1_scores = {}
# 计算SQL关键字的F1
keyword_p = precisions['keyword_precision']
keyword_r = recalls['keyword_recall']
keyword_f1 = 2 * keyword_p * keyword_r / (keyword_p + keyword_r + 1e-8)
f1_scores['keyword_f1'] = keyword_f1
# 计算表格列选择的F1
column_p = precisions['column_precision']
column_r = recalls['column_recall']
column_f1 = 2 * column_p * column_r / (column_p + column_r + 1e-8)
f1_scores['column_f1'] = column_f1
return f1_scores
def compute_query_similarity(pred_query, target_query):
"""计算查询语义相似度
使用预训练语言模型计算查询之间的相似度
"""
from transformers import AutoModel, AutoTokenizer
# 加载预训练模型
model_name = 'bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# 编码查询
pred_tokens = tokenizer(pred_query, return_tensors='pt', padding=True)
target_tokens = tokenizer(target_query, return_tensors='pt', padding=True)
# 获取查询表示
with torch.no_grad():
pred_emb = model(**pred_tokens).pooler_output
target_emb = model(**target_tokens).pooler_output
# 计算余弦相似度
similarity = F.cosine_similarity(pred_emb, target_emb)
return similarity.item()