-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
69 lines (49 loc) · 2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import tempfile
import os
import argparse
import json
from Bio import SeqIO
from model.utils import feature_generate
from model.data import NeuroPepDataset, collate_fn
from model.net import AttentiveNet
from torch.utils.data import DataLoader
import torch
def test_data_iter(data_path):
data = NeuroPepDataset(data_path)
test = DataLoader(data, len(data), collate_fn=collate_fn)
return test
def pred_cl(sequence, model_path):
tmp_dir = tempfile.mkdtemp(suffix='-neuropep')
with open(os.path.join(tmp_dir, 'seq.fasta'), mode='w') as fw:
fw.write(sequence)
signalp_pos = feature_generate(os.path.join(
tmp_dir, 'seq.fasta'), tmp_dir, device='cpu')
test_loader = test_data_iter(tmp_dir)
pos, pred_prob = neuropepCpred(model_path, test_loader, 'cpu')
pos = [item+signalp_pos+1 for item in pos]
data = sorted([(i, j) for i, j in zip(pos, pred_prob)], key=lambda k: k[0])
return {'signal_pos': signalp_pos, 'predict':data, 'sequence':sequence}
def neuropepCpred(model_path, test_loader, device):
model = AttentiveNet(768, 16)
model_dict = torch.load(model_path, map_location=device)
model.load_state_dict(model_dict['state_dict'])
model.eval()
with torch.no_grad():
for _, (tokens, pos) in enumerate(test_loader):
tokens = tokens.to(device)
predict = model(tokens)
return pos, predict.cpu().tolist()
def get_params():
parser = argparse.ArgumentParser('DeepNeuropePred model')
parser.add_argument('--model-file', type=str, help='model file')
parser.add_argument('--input-fasta', type=str, help='fasta file')
parser.add_argument('--ouput-json', type=str, help='json file')
args, _ = parser.parse_known_args()
return args
if __name__ == "__main__":
args = vars(get_params())
model_path = args['model_file']
out = {}
for record in SeqIO.parse(args['input_fasta']):
out[record.id] = pred_cl(str(record.seq), model_path)
json.dump(out, open(args['output_json'], 'w'))