-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbninception.py
1160 lines (1143 loc) · 50.8 KB
/
bninception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
pretrained_settings = {
"bninception": {
"imagenet": {
"url": 'http://data.lip6.fr/cadene/pretrainedmodels/bn_inception-52deb4733.pth',
"input_space": "BGR",
"input_size": [3, 224, 224],
"input_range": [0, 255],
"mean": [104, 117, 128],
"std": [1, 1, 1],
"num_classes": 1000,
}
}
}
class BNInception(nn.Module):
output_size = 1024
def __init__(self, pretrained=True):
super(BNInception, self).__init__()
self.model = bninception(
num_classes=1000, pretrained="imagenet" if pretrained else None
)
def forward(self, input):
x = self.model.features(input)
x = F.avg_pool2d(x, kernel_size=x.shape[2])
return x
class BNInceptionImageNet(nn.Module):
def __init__(self, num_classes=1000):
super(BNInceptionImageNet, self).__init__()
inplace = True
self.conv1_7x7_s2 = nn.Conv2d(
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3)
)
self.conv1_7x7_s2_bn = nn.BatchNorm2d(64, eps=1e-05, momentum=0.9, affine=True)
self.conv1_relu_7x7 = nn.ReLU(inplace)
self.pool1_3x3_s2 = nn.MaxPool2d(
(3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True
)
self.conv2_3x3_reduce = nn.Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
self.conv2_3x3_reduce_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.conv2_relu_3x3_reduce = nn.ReLU(inplace)
self.conv2_3x3 = nn.Conv2d(
64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.conv2_3x3_bn = nn.BatchNorm2d(192, eps=1e-05, momentum=0.9, affine=True)
self.conv2_relu_3x3 = nn.ReLU(inplace)
self.pool2_3x3_s2 = nn.MaxPool2d(
(3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True
)
self.inception_3a_1x1 = nn.Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3a_1x1_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3a_relu_1x1 = nn.ReLU(inplace)
self.inception_3a_3x3_reduce = nn.Conv2d(
192, 64, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3a_3x3_reduce_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3a_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_3a_3x3 = nn.Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_3a_3x3_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3a_relu_3x3 = nn.ReLU(inplace)
self.inception_3a_double_3x3_reduce = nn.Conv2d(
192, 64, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3a_double_3x3_reduce_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3a_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_3a_double_3x3_1 = nn.Conv2d(
64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_3a_double_3x3_1_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3a_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_3a_double_3x3_2 = nn.Conv2d(
96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_3a_double_3x3_2_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3a_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_3a_pool = nn.AvgPool2d(
3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
)
self.inception_3a_pool_proj = nn.Conv2d(
192, 32, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3a_pool_proj_bn = nn.BatchNorm2d(
32, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3a_relu_pool_proj = nn.ReLU(inplace)
self.inception_3b_1x1 = nn.Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
self.inception_3b_1x1_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3b_relu_1x1 = nn.ReLU(inplace)
self.inception_3b_3x3_reduce = nn.Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3b_3x3_reduce_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3b_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_3b_3x3 = nn.Conv2d(
64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_3b_3x3_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3b_relu_3x3 = nn.ReLU(inplace)
self.inception_3b_double_3x3_reduce = nn.Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3b_double_3x3_reduce_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3b_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_3b_double_3x3_1 = nn.Conv2d(
64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_3b_double_3x3_1_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3b_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_3b_double_3x3_2 = nn.Conv2d(
96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_3b_double_3x3_2_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3b_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_3b_pool = nn.AvgPool2d(
3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
)
self.inception_3b_pool_proj = nn.Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3b_pool_proj_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3b_relu_pool_proj = nn.ReLU(inplace)
self.inception_3c_3x3_reduce = nn.Conv2d(
320, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3c_3x3_reduce_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3c_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_3c_3x3 = nn.Conv2d(
128, 160, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
)
self.inception_3c_3x3_bn = nn.BatchNorm2d(
160, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3c_relu_3x3 = nn.ReLU(inplace)
self.inception_3c_double_3x3_reduce = nn.Conv2d(
320, 64, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_3c_double_3x3_reduce_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3c_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_3c_double_3x3_1 = nn.Conv2d(
64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_3c_double_3x3_1_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3c_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_3c_double_3x3_2 = nn.Conv2d(
96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
)
self.inception_3c_double_3x3_2_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_3c_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_3c_pool = nn.MaxPool2d(
(3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True
)
self.inception_4a_1x1 = nn.Conv2d(576, 224, kernel_size=(1, 1), stride=(1, 1))
self.inception_4a_1x1_bn = nn.BatchNorm2d(
224, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4a_relu_1x1 = nn.ReLU(inplace)
self.inception_4a_3x3_reduce = nn.Conv2d(
576, 64, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4a_3x3_reduce_bn = nn.BatchNorm2d(
64, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4a_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_4a_3x3 = nn.Conv2d(
64, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4a_3x3_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4a_relu_3x3 = nn.ReLU(inplace)
self.inception_4a_double_3x3_reduce = nn.Conv2d(
576, 96, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4a_double_3x3_reduce_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4a_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_4a_double_3x3_1 = nn.Conv2d(
96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4a_double_3x3_1_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4a_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_4a_double_3x3_2 = nn.Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4a_double_3x3_2_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4a_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_4a_pool = nn.AvgPool2d(
3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
)
self.inception_4a_pool_proj = nn.Conv2d(
576, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4a_pool_proj_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4a_relu_pool_proj = nn.ReLU(inplace)
self.inception_4b_1x1 = nn.Conv2d(576, 192, kernel_size=(1, 1), stride=(1, 1))
self.inception_4b_1x1_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4b_relu_1x1 = nn.ReLU(inplace)
self.inception_4b_3x3_reduce = nn.Conv2d(
576, 96, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4b_3x3_reduce_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4b_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_4b_3x3 = nn.Conv2d(
96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4b_3x3_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4b_relu_3x3 = nn.ReLU(inplace)
self.inception_4b_double_3x3_reduce = nn.Conv2d(
576, 96, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4b_double_3x3_reduce_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4b_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_4b_double_3x3_1 = nn.Conv2d(
96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4b_double_3x3_1_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4b_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_4b_double_3x3_2 = nn.Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4b_double_3x3_2_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4b_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_4b_pool = nn.AvgPool2d(
3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
)
self.inception_4b_pool_proj = nn.Conv2d(
576, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4b_pool_proj_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4b_relu_pool_proj = nn.ReLU(inplace)
self.inception_4c_1x1 = nn.Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1))
self.inception_4c_1x1_bn = nn.BatchNorm2d(
160, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4c_relu_1x1 = nn.ReLU(inplace)
self.inception_4c_3x3_reduce = nn.Conv2d(
576, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4c_3x3_reduce_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4c_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_4c_3x3 = nn.Conv2d(
128, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4c_3x3_bn = nn.BatchNorm2d(
160, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4c_relu_3x3 = nn.ReLU(inplace)
self.inception_4c_double_3x3_reduce = nn.Conv2d(
576, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4c_double_3x3_reduce_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4c_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_4c_double_3x3_1 = nn.Conv2d(
128, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4c_double_3x3_1_bn = nn.BatchNorm2d(
160, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4c_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_4c_double_3x3_2 = nn.Conv2d(
160, 160, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4c_double_3x3_2_bn = nn.BatchNorm2d(
160, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4c_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_4c_pool = nn.AvgPool2d(
3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
)
self.inception_4c_pool_proj = nn.Conv2d(
576, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4c_pool_proj_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4c_relu_pool_proj = nn.ReLU(inplace)
self.inception_4d_1x1 = nn.Conv2d(608, 96, kernel_size=(1, 1), stride=(1, 1))
self.inception_4d_1x1_bn = nn.BatchNorm2d(
96, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4d_relu_1x1 = nn.ReLU(inplace)
self.inception_4d_3x3_reduce = nn.Conv2d(
608, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4d_3x3_reduce_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4d_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_4d_3x3 = nn.Conv2d(
128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4d_3x3_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4d_relu_3x3 = nn.ReLU(inplace)
self.inception_4d_double_3x3_reduce = nn.Conv2d(
608, 160, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4d_double_3x3_reduce_bn = nn.BatchNorm2d(
160, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4d_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_4d_double_3x3_1 = nn.Conv2d(
160, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4d_double_3x3_1_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4d_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_4d_double_3x3_2 = nn.Conv2d(
192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4d_double_3x3_2_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4d_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_4d_pool = nn.AvgPool2d(
3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
)
self.inception_4d_pool_proj = nn.Conv2d(
608, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4d_pool_proj_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4d_relu_pool_proj = nn.ReLU(inplace)
self.inception_4e_3x3_reduce = nn.Conv2d(
608, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4e_3x3_reduce_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4e_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_4e_3x3 = nn.Conv2d(
128, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
)
self.inception_4e_3x3_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4e_relu_3x3 = nn.ReLU(inplace)
self.inception_4e_double_3x3_reduce = nn.Conv2d(
608, 192, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_4e_double_3x3_reduce_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4e_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_4e_double_3x3_1 = nn.Conv2d(
192, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_4e_double_3x3_1_bn = nn.BatchNorm2d(
256, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4e_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_4e_double_3x3_2 = nn.Conv2d(
256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)
)
self.inception_4e_double_3x3_2_bn = nn.BatchNorm2d(
256, eps=1e-05, momentum=0.9, affine=True
)
self.inception_4e_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_4e_pool = nn.MaxPool2d(
(3, 3), stride=(2, 2), dilation=(1, 1), ceil_mode=True
)
self.inception_5a_1x1 = nn.Conv2d(1056, 352, kernel_size=(1, 1), stride=(1, 1))
self.inception_5a_1x1_bn = nn.BatchNorm2d(
352, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5a_relu_1x1 = nn.ReLU(inplace)
self.inception_5a_3x3_reduce = nn.Conv2d(
1056, 192, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_5a_3x3_reduce_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5a_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_5a_3x3 = nn.Conv2d(
192, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_5a_3x3_bn = nn.BatchNorm2d(
320, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5a_relu_3x3 = nn.ReLU(inplace)
self.inception_5a_double_3x3_reduce = nn.Conv2d(
1056, 160, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_5a_double_3x3_reduce_bn = nn.BatchNorm2d(
160, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5a_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_5a_double_3x3_1 = nn.Conv2d(
160, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_5a_double_3x3_1_bn = nn.BatchNorm2d(
224, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5a_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_5a_double_3x3_2 = nn.Conv2d(
224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_5a_double_3x3_2_bn = nn.BatchNorm2d(
224, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5a_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_5a_pool = nn.AvgPool2d(
3, stride=1, padding=1, ceil_mode=True, count_include_pad=True
)
self.inception_5a_pool_proj = nn.Conv2d(
1056, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_5a_pool_proj_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5a_relu_pool_proj = nn.ReLU(inplace)
self.inception_5b_1x1 = nn.Conv2d(1024, 352, kernel_size=(1, 1), stride=(1, 1))
self.inception_5b_1x1_bn = nn.BatchNorm2d(
352, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5b_relu_1x1 = nn.ReLU(inplace)
self.inception_5b_3x3_reduce = nn.Conv2d(
1024, 192, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_5b_3x3_reduce_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5b_relu_3x3_reduce = nn.ReLU(inplace)
self.inception_5b_3x3 = nn.Conv2d(
192, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_5b_3x3_bn = nn.BatchNorm2d(
320, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5b_relu_3x3 = nn.ReLU(inplace)
self.inception_5b_double_3x3_reduce = nn.Conv2d(
1024, 192, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_5b_double_3x3_reduce_bn = nn.BatchNorm2d(
192, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5b_relu_double_3x3_reduce = nn.ReLU(inplace)
self.inception_5b_double_3x3_1 = nn.Conv2d(
192, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_5b_double_3x3_1_bn = nn.BatchNorm2d(
224, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5b_relu_double_3x3_1 = nn.ReLU(inplace)
self.inception_5b_double_3x3_2 = nn.Conv2d(
224, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
self.inception_5b_double_3x3_2_bn = nn.BatchNorm2d(
224, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5b_relu_double_3x3_2 = nn.ReLU(inplace)
self.inception_5b_pool = nn.MaxPool2d(
(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), ceil_mode=True
)
self.inception_5b_pool_proj = nn.Conv2d(
1024, 128, kernel_size=(1, 1), stride=(1, 1)
)
self.inception_5b_pool_proj_bn = nn.BatchNorm2d(
128, eps=1e-05, momentum=0.9, affine=True
)
self.inception_5b_relu_pool_proj = nn.ReLU(inplace)
self.global_pool = nn.AvgPool2d(
7, stride=1, padding=0, ceil_mode=True, count_include_pad=True
)
self.last_linear = nn.Linear(1024, num_classes)
def features(self, input):
conv1_7x7_s2_out = self.conv1_7x7_s2(input)
conv1_7x7_s2_bn_out = self.conv1_7x7_s2_bn(conv1_7x7_s2_out)
conv1_relu_7x7_out = self.conv1_relu_7x7(conv1_7x7_s2_bn_out)
pool1_3x3_s2_out = self.pool1_3x3_s2(conv1_7x7_s2_bn_out)
conv2_3x3_reduce_out = self.conv2_3x3_reduce(pool1_3x3_s2_out)
conv2_3x3_reduce_bn_out = self.conv2_3x3_reduce_bn(conv2_3x3_reduce_out)
conv2_relu_3x3_reduce_out = self.conv2_relu_3x3_reduce(conv2_3x3_reduce_bn_out)
conv2_3x3_out = self.conv2_3x3(conv2_3x3_reduce_bn_out)
conv2_3x3_bn_out = self.conv2_3x3_bn(conv2_3x3_out)
conv2_relu_3x3_out = self.conv2_relu_3x3(conv2_3x3_bn_out)
pool2_3x3_s2_out = self.pool2_3x3_s2(conv2_3x3_bn_out)
inception_3a_1x1_out = self.inception_3a_1x1(pool2_3x3_s2_out)
inception_3a_1x1_bn_out = self.inception_3a_1x1_bn(inception_3a_1x1_out)
inception_3a_relu_1x1_out = self.inception_3a_relu_1x1(inception_3a_1x1_bn_out)
inception_3a_3x3_reduce_out = self.inception_3a_3x3_reduce(pool2_3x3_s2_out)
inception_3a_3x3_reduce_bn_out = self.inception_3a_3x3_reduce_bn(
inception_3a_3x3_reduce_out
)
inception_3a_relu_3x3_reduce_out = self.inception_3a_relu_3x3_reduce(
inception_3a_3x3_reduce_bn_out
)
inception_3a_3x3_out = self.inception_3a_3x3(inception_3a_3x3_reduce_bn_out)
inception_3a_3x3_bn_out = self.inception_3a_3x3_bn(inception_3a_3x3_out)
inception_3a_relu_3x3_out = self.inception_3a_relu_3x3(inception_3a_3x3_bn_out)
inception_3a_double_3x3_reduce_out = self.inception_3a_double_3x3_reduce(
pool2_3x3_s2_out
)
inception_3a_double_3x3_reduce_bn_out = self.inception_3a_double_3x3_reduce_bn(
inception_3a_double_3x3_reduce_out
)
inception_3a_relu_double_3x3_reduce_out = self.inception_3a_relu_double_3x3_reduce(
inception_3a_double_3x3_reduce_bn_out
)
inception_3a_double_3x3_1_out = self.inception_3a_double_3x3_1(
inception_3a_double_3x3_reduce_bn_out
)
inception_3a_double_3x3_1_bn_out = self.inception_3a_double_3x3_1_bn(
inception_3a_double_3x3_1_out
)
inception_3a_relu_double_3x3_1_out = self.inception_3a_relu_double_3x3_1(
inception_3a_double_3x3_1_bn_out
)
inception_3a_double_3x3_2_out = self.inception_3a_double_3x3_2(
inception_3a_double_3x3_1_bn_out
)
inception_3a_double_3x3_2_bn_out = self.inception_3a_double_3x3_2_bn(
inception_3a_double_3x3_2_out
)
inception_3a_relu_double_3x3_2_out = self.inception_3a_relu_double_3x3_2(
inception_3a_double_3x3_2_bn_out
)
inception_3a_pool_out = self.inception_3a_pool(pool2_3x3_s2_out)
inception_3a_pool_proj_out = self.inception_3a_pool_proj(inception_3a_pool_out)
inception_3a_pool_proj_bn_out = self.inception_3a_pool_proj_bn(
inception_3a_pool_proj_out
)
inception_3a_relu_pool_proj_out = self.inception_3a_relu_pool_proj(
inception_3a_pool_proj_bn_out
)
inception_3a_output_out = torch.cat(
[
inception_3a_1x1_bn_out,
inception_3a_3x3_bn_out,
inception_3a_double_3x3_2_bn_out,
inception_3a_pool_proj_bn_out,
],
1,
)
inception_3b_1x1_out = self.inception_3b_1x1(inception_3a_output_out)
inception_3b_1x1_bn_out = self.inception_3b_1x1_bn(inception_3b_1x1_out)
inception_3b_relu_1x1_out = self.inception_3b_relu_1x1(inception_3b_1x1_bn_out)
inception_3b_3x3_reduce_out = self.inception_3b_3x3_reduce(
inception_3a_output_out
)
inception_3b_3x3_reduce_bn_out = self.inception_3b_3x3_reduce_bn(
inception_3b_3x3_reduce_out
)
inception_3b_relu_3x3_reduce_out = self.inception_3b_relu_3x3_reduce(
inception_3b_3x3_reduce_bn_out
)
inception_3b_3x3_out = self.inception_3b_3x3(inception_3b_3x3_reduce_bn_out)
inception_3b_3x3_bn_out = self.inception_3b_3x3_bn(inception_3b_3x3_out)
inception_3b_relu_3x3_out = self.inception_3b_relu_3x3(inception_3b_3x3_bn_out)
inception_3b_double_3x3_reduce_out = self.inception_3b_double_3x3_reduce(
inception_3a_output_out
)
inception_3b_double_3x3_reduce_bn_out = self.inception_3b_double_3x3_reduce_bn(
inception_3b_double_3x3_reduce_out
)
inception_3b_relu_double_3x3_reduce_out = self.inception_3b_relu_double_3x3_reduce(
inception_3b_double_3x3_reduce_bn_out
)
inception_3b_double_3x3_1_out = self.inception_3b_double_3x3_1(
inception_3b_double_3x3_reduce_bn_out
)
inception_3b_double_3x3_1_bn_out = self.inception_3b_double_3x3_1_bn(
inception_3b_double_3x3_1_out
)
inception_3b_relu_double_3x3_1_out = self.inception_3b_relu_double_3x3_1(
inception_3b_double_3x3_1_bn_out
)
inception_3b_double_3x3_2_out = self.inception_3b_double_3x3_2(
inception_3b_double_3x3_1_bn_out
)
inception_3b_double_3x3_2_bn_out = self.inception_3b_double_3x3_2_bn(
inception_3b_double_3x3_2_out
)
inception_3b_relu_double_3x3_2_out = self.inception_3b_relu_double_3x3_2(
inception_3b_double_3x3_2_bn_out
)
inception_3b_pool_out = self.inception_3b_pool(inception_3a_output_out)
inception_3b_pool_proj_out = self.inception_3b_pool_proj(inception_3b_pool_out)
inception_3b_pool_proj_bn_out = self.inception_3b_pool_proj_bn(
inception_3b_pool_proj_out
)
inception_3b_relu_pool_proj_out = self.inception_3b_relu_pool_proj(
inception_3b_pool_proj_bn_out
)
inception_3b_output_out = torch.cat(
[
inception_3b_1x1_bn_out,
inception_3b_3x3_bn_out,
inception_3b_double_3x3_2_bn_out,
inception_3b_pool_proj_bn_out,
],
1,
)
inception_3c_3x3_reduce_out = self.inception_3c_3x3_reduce(
inception_3b_output_out
)
inception_3c_3x3_reduce_bn_out = self.inception_3c_3x3_reduce_bn(
inception_3c_3x3_reduce_out
)
inception_3c_relu_3x3_reduce_out = self.inception_3c_relu_3x3_reduce(
inception_3c_3x3_reduce_bn_out
)
inception_3c_3x3_out = self.inception_3c_3x3(inception_3c_3x3_reduce_bn_out)
inception_3c_3x3_bn_out = self.inception_3c_3x3_bn(inception_3c_3x3_out)
inception_3c_relu_3x3_out = self.inception_3c_relu_3x3(inception_3c_3x3_bn_out)
inception_3c_double_3x3_reduce_out = self.inception_3c_double_3x3_reduce(
inception_3b_output_out
)
inception_3c_double_3x3_reduce_bn_out = self.inception_3c_double_3x3_reduce_bn(
inception_3c_double_3x3_reduce_out
)
inception_3c_relu_double_3x3_reduce_out = self.inception_3c_relu_double_3x3_reduce(
inception_3c_double_3x3_reduce_bn_out
)
inception_3c_double_3x3_1_out = self.inception_3c_double_3x3_1(
inception_3c_double_3x3_reduce_bn_out
)
inception_3c_double_3x3_1_bn_out = self.inception_3c_double_3x3_1_bn(
inception_3c_double_3x3_1_out
)
inception_3c_relu_double_3x3_1_out = self.inception_3c_relu_double_3x3_1(
inception_3c_double_3x3_1_bn_out
)
inception_3c_double_3x3_2_out = self.inception_3c_double_3x3_2(
inception_3c_double_3x3_1_bn_out
)
inception_3c_double_3x3_2_bn_out = self.inception_3c_double_3x3_2_bn(
inception_3c_double_3x3_2_out
)
inception_3c_relu_double_3x3_2_out = self.inception_3c_relu_double_3x3_2(
inception_3c_double_3x3_2_bn_out
)
inception_3c_pool_out = self.inception_3c_pool(inception_3b_output_out)
inception_3c_output_out = torch.cat(
[
inception_3c_3x3_bn_out,
inception_3c_double_3x3_2_bn_out,
inception_3c_pool_out,
],
1,
)
inception_4a_1x1_out = self.inception_4a_1x1(inception_3c_output_out)
inception_4a_1x1_bn_out = self.inception_4a_1x1_bn(inception_4a_1x1_out)
inception_4a_relu_1x1_out = self.inception_4a_relu_1x1(inception_4a_1x1_bn_out)
inception_4a_3x3_reduce_out = self.inception_4a_3x3_reduce(
inception_3c_output_out
)
inception_4a_3x3_reduce_bn_out = self.inception_4a_3x3_reduce_bn(
inception_4a_3x3_reduce_out
)
inception_4a_relu_3x3_reduce_out = self.inception_4a_relu_3x3_reduce(
inception_4a_3x3_reduce_bn_out
)
inception_4a_3x3_out = self.inception_4a_3x3(inception_4a_3x3_reduce_bn_out)
inception_4a_3x3_bn_out = self.inception_4a_3x3_bn(inception_4a_3x3_out)
inception_4a_relu_3x3_out = self.inception_4a_relu_3x3(inception_4a_3x3_bn_out)
inception_4a_double_3x3_reduce_out = self.inception_4a_double_3x3_reduce(
inception_3c_output_out
)
inception_4a_double_3x3_reduce_bn_out = self.inception_4a_double_3x3_reduce_bn(
inception_4a_double_3x3_reduce_out
)
inception_4a_relu_double_3x3_reduce_out = self.inception_4a_relu_double_3x3_reduce(
inception_4a_double_3x3_reduce_bn_out
)
inception_4a_double_3x3_1_out = self.inception_4a_double_3x3_1(
inception_4a_double_3x3_reduce_bn_out
)
inception_4a_double_3x3_1_bn_out = self.inception_4a_double_3x3_1_bn(
inception_4a_double_3x3_1_out
)
inception_4a_relu_double_3x3_1_out = self.inception_4a_relu_double_3x3_1(
inception_4a_double_3x3_1_bn_out
)
inception_4a_double_3x3_2_out = self.inception_4a_double_3x3_2(
inception_4a_double_3x3_1_bn_out
)
inception_4a_double_3x3_2_bn_out = self.inception_4a_double_3x3_2_bn(
inception_4a_double_3x3_2_out
)
inception_4a_relu_double_3x3_2_out = self.inception_4a_relu_double_3x3_2(
inception_4a_double_3x3_2_bn_out
)
inception_4a_pool_out = self.inception_4a_pool(inception_3c_output_out)
inception_4a_pool_proj_out = self.inception_4a_pool_proj(inception_4a_pool_out)
inception_4a_pool_proj_bn_out = self.inception_4a_pool_proj_bn(
inception_4a_pool_proj_out
)
inception_4a_relu_pool_proj_out = self.inception_4a_relu_pool_proj(
inception_4a_pool_proj_bn_out
)
inception_4a_output_out = torch.cat(
[
inception_4a_1x1_bn_out,
inception_4a_3x3_bn_out,
inception_4a_double_3x3_2_bn_out,
inception_4a_pool_proj_bn_out,
],
1,
)
inception_4b_1x1_out = self.inception_4b_1x1(inception_4a_output_out)
inception_4b_1x1_bn_out = self.inception_4b_1x1_bn(inception_4b_1x1_out)
inception_4b_relu_1x1_out = self.inception_4b_relu_1x1(inception_4b_1x1_bn_out)
inception_4b_3x3_reduce_out = self.inception_4b_3x3_reduce(
inception_4a_output_out
)
inception_4b_3x3_reduce_bn_out = self.inception_4b_3x3_reduce_bn(
inception_4b_3x3_reduce_out
)
inception_4b_relu_3x3_reduce_out = self.inception_4b_relu_3x3_reduce(
inception_4b_3x3_reduce_bn_out
)
inception_4b_3x3_out = self.inception_4b_3x3(inception_4b_3x3_reduce_bn_out)
inception_4b_3x3_bn_out = self.inception_4b_3x3_bn(inception_4b_3x3_out)
inception_4b_relu_3x3_out = self.inception_4b_relu_3x3(inception_4b_3x3_bn_out)
inception_4b_double_3x3_reduce_out = self.inception_4b_double_3x3_reduce(
inception_4a_output_out
)
inception_4b_double_3x3_reduce_bn_out = self.inception_4b_double_3x3_reduce_bn(
inception_4b_double_3x3_reduce_out
)
inception_4b_relu_double_3x3_reduce_out = self.inception_4b_relu_double_3x3_reduce(
inception_4b_double_3x3_reduce_bn_out
)
inception_4b_double_3x3_1_out = self.inception_4b_double_3x3_1(
inception_4b_double_3x3_reduce_bn_out
)
inception_4b_double_3x3_1_bn_out = self.inception_4b_double_3x3_1_bn(
inception_4b_double_3x3_1_out
)
inception_4b_relu_double_3x3_1_out = self.inception_4b_relu_double_3x3_1(
inception_4b_double_3x3_1_bn_out
)
inception_4b_double_3x3_2_out = self.inception_4b_double_3x3_2(
inception_4b_double_3x3_1_bn_out
)
inception_4b_double_3x3_2_bn_out = self.inception_4b_double_3x3_2_bn(
inception_4b_double_3x3_2_out
)
inception_4b_relu_double_3x3_2_out = self.inception_4b_relu_double_3x3_2(
inception_4b_double_3x3_2_bn_out
)
inception_4b_pool_out = self.inception_4b_pool(inception_4a_output_out)
inception_4b_pool_proj_out = self.inception_4b_pool_proj(inception_4b_pool_out)
inception_4b_pool_proj_bn_out = self.inception_4b_pool_proj_bn(
inception_4b_pool_proj_out
)
inception_4b_relu_pool_proj_out = self.inception_4b_relu_pool_proj(
inception_4b_pool_proj_bn_out
)
inception_4b_output_out = torch.cat(
[
inception_4b_1x1_bn_out,
inception_4b_3x3_bn_out,
inception_4b_double_3x3_2_bn_out,
inception_4b_pool_proj_bn_out,
],
1,
)
inception_4c_1x1_out = self.inception_4c_1x1(inception_4b_output_out)
inception_4c_1x1_bn_out = self.inception_4c_1x1_bn(inception_4c_1x1_out)
inception_4c_relu_1x1_out = self.inception_4c_relu_1x1(inception_4c_1x1_bn_out)
inception_4c_3x3_reduce_out = self.inception_4c_3x3_reduce(
inception_4b_output_out
)
inception_4c_3x3_reduce_bn_out = self.inception_4c_3x3_reduce_bn(
inception_4c_3x3_reduce_out
)
inception_4c_relu_3x3_reduce_out = self.inception_4c_relu_3x3_reduce(
inception_4c_3x3_reduce_bn_out
)
inception_4c_3x3_out = self.inception_4c_3x3(inception_4c_3x3_reduce_bn_out)
inception_4c_3x3_bn_out = self.inception_4c_3x3_bn(inception_4c_3x3_out)
inception_4c_relu_3x3_out = self.inception_4c_relu_3x3(inception_4c_3x3_bn_out)
inception_4c_double_3x3_reduce_out = self.inception_4c_double_3x3_reduce(
inception_4b_output_out
)
inception_4c_double_3x3_reduce_bn_out = self.inception_4c_double_3x3_reduce_bn(
inception_4c_double_3x3_reduce_out
)
inception_4c_relu_double_3x3_reduce_out = self.inception_4c_relu_double_3x3_reduce(
inception_4c_double_3x3_reduce_bn_out
)
inception_4c_double_3x3_1_out = self.inception_4c_double_3x3_1(
inception_4c_double_3x3_reduce_bn_out
)
inception_4c_double_3x3_1_bn_out = self.inception_4c_double_3x3_1_bn(
inception_4c_double_3x3_1_out
)
inception_4c_relu_double_3x3_1_out = self.inception_4c_relu_double_3x3_1(
inception_4c_double_3x3_1_bn_out
)
inception_4c_double_3x3_2_out = self.inception_4c_double_3x3_2(
inception_4c_double_3x3_1_bn_out
)
inception_4c_double_3x3_2_bn_out = self.inception_4c_double_3x3_2_bn(
inception_4c_double_3x3_2_out
)
inception_4c_relu_double_3x3_2_out = self.inception_4c_relu_double_3x3_2(
inception_4c_double_3x3_2_bn_out
)
inception_4c_pool_out = self.inception_4c_pool(inception_4b_output_out)
inception_4c_pool_proj_out = self.inception_4c_pool_proj(inception_4c_pool_out)
inception_4c_pool_proj_bn_out = self.inception_4c_pool_proj_bn(
inception_4c_pool_proj_out
)
inception_4c_relu_pool_proj_out = self.inception_4c_relu_pool_proj(
inception_4c_pool_proj_bn_out
)
inception_4c_output_out = torch.cat(
[
inception_4c_1x1_bn_out,
inception_4c_3x3_bn_out,
inception_4c_double_3x3_2_bn_out,
inception_4c_pool_proj_bn_out,
],
1,
)
inception_4d_1x1_out = self.inception_4d_1x1(inception_4c_output_out)
inception_4d_1x1_bn_out = self.inception_4d_1x1_bn(inception_4d_1x1_out)
inception_4d_relu_1x1_out = self.inception_4d_relu_1x1(inception_4d_1x1_bn_out)
inception_4d_3x3_reduce_out = self.inception_4d_3x3_reduce(
inception_4c_output_out
)
inception_4d_3x3_reduce_bn_out = self.inception_4d_3x3_reduce_bn(
inception_4d_3x3_reduce_out
)
inception_4d_relu_3x3_reduce_out = self.inception_4d_relu_3x3_reduce(
inception_4d_3x3_reduce_bn_out
)
inception_4d_3x3_out = self.inception_4d_3x3(inception_4d_3x3_reduce_bn_out)
inception_4d_3x3_bn_out = self.inception_4d_3x3_bn(inception_4d_3x3_out)
inception_4d_relu_3x3_out = self.inception_4d_relu_3x3(inception_4d_3x3_bn_out)
inception_4d_double_3x3_reduce_out = self.inception_4d_double_3x3_reduce(
inception_4c_output_out
)
inception_4d_double_3x3_reduce_bn_out = self.inception_4d_double_3x3_reduce_bn(
inception_4d_double_3x3_reduce_out
)
inception_4d_relu_double_3x3_reduce_out = self.inception_4d_relu_double_3x3_reduce(
inception_4d_double_3x3_reduce_bn_out
)
inception_4d_double_3x3_1_out = self.inception_4d_double_3x3_1(
inception_4d_double_3x3_reduce_bn_out
)
inception_4d_double_3x3_1_bn_out = self.inception_4d_double_3x3_1_bn(
inception_4d_double_3x3_1_out
)
inception_4d_relu_double_3x3_1_out = self.inception_4d_relu_double_3x3_1(
inception_4d_double_3x3_1_bn_out
)
inception_4d_double_3x3_2_out = self.inception_4d_double_3x3_2(
inception_4d_double_3x3_1_bn_out
)
inception_4d_double_3x3_2_bn_out = self.inception_4d_double_3x3_2_bn(
inception_4d_double_3x3_2_out
)
inception_4d_relu_double_3x3_2_out = self.inception_4d_relu_double_3x3_2(
inception_4d_double_3x3_2_bn_out
)
inception_4d_pool_out = self.inception_4d_pool(inception_4c_output_out)
inception_4d_pool_proj_out = self.inception_4d_pool_proj(inception_4d_pool_out)
inception_4d_pool_proj_bn_out = self.inception_4d_pool_proj_bn(
inception_4d_pool_proj_out
)
inception_4d_relu_pool_proj_out = self.inception_4d_relu_pool_proj(
inception_4d_pool_proj_bn_out
)
inception_4d_output_out = torch.cat(
[
inception_4d_1x1_bn_out,
inception_4d_3x3_bn_out,
inception_4d_double_3x3_2_bn_out,
inception_4d_pool_proj_bn_out,
],
1,
)
inception_4e_3x3_reduce_out = self.inception_4e_3x3_reduce(
inception_4d_output_out
)
inception_4e_3x3_reduce_bn_out = self.inception_4e_3x3_reduce_bn(
inception_4e_3x3_reduce_out
)
inception_4e_relu_3x3_reduce_out = self.inception_4e_relu_3x3_reduce(
inception_4e_3x3_reduce_bn_out
)
inception_4e_3x3_out = self.inception_4e_3x3(inception_4e_3x3_reduce_bn_out)
inception_4e_3x3_bn_out = self.inception_4e_3x3_bn(inception_4e_3x3_out)
inception_4e_relu_3x3_out = self.inception_4e_relu_3x3(inception_4e_3x3_bn_out)
inception_4e_double_3x3_reduce_out = self.inception_4e_double_3x3_reduce(
inception_4d_output_out
)
inception_4e_double_3x3_reduce_bn_out = self.inception_4e_double_3x3_reduce_bn(
inception_4e_double_3x3_reduce_out
)
inception_4e_relu_double_3x3_reduce_out = self.inception_4e_relu_double_3x3_reduce(
inception_4e_double_3x3_reduce_bn_out
)
inception_4e_double_3x3_1_out = self.inception_4e_double_3x3_1(
inception_4e_double_3x3_reduce_bn_out
)
inception_4e_double_3x3_1_bn_out = self.inception_4e_double_3x3_1_bn(
inception_4e_double_3x3_1_out
)
inception_4e_relu_double_3x3_1_out = self.inception_4e_relu_double_3x3_1(
inception_4e_double_3x3_1_bn_out
)
inception_4e_double_3x3_2_out = self.inception_4e_double_3x3_2(
inception_4e_double_3x3_1_bn_out
)
inception_4e_double_3x3_2_bn_out = self.inception_4e_double_3x3_2_bn(
inception_4e_double_3x3_2_out
)
inception_4e_relu_double_3x3_2_out = self.inception_4e_relu_double_3x3_2(
inception_4e_double_3x3_2_bn_out
)
inception_4e_pool_out = self.inception_4e_pool(inception_4d_output_out)
inception_4e_output_out = torch.cat(
[
inception_4e_3x3_bn_out,
inception_4e_double_3x3_2_bn_out,