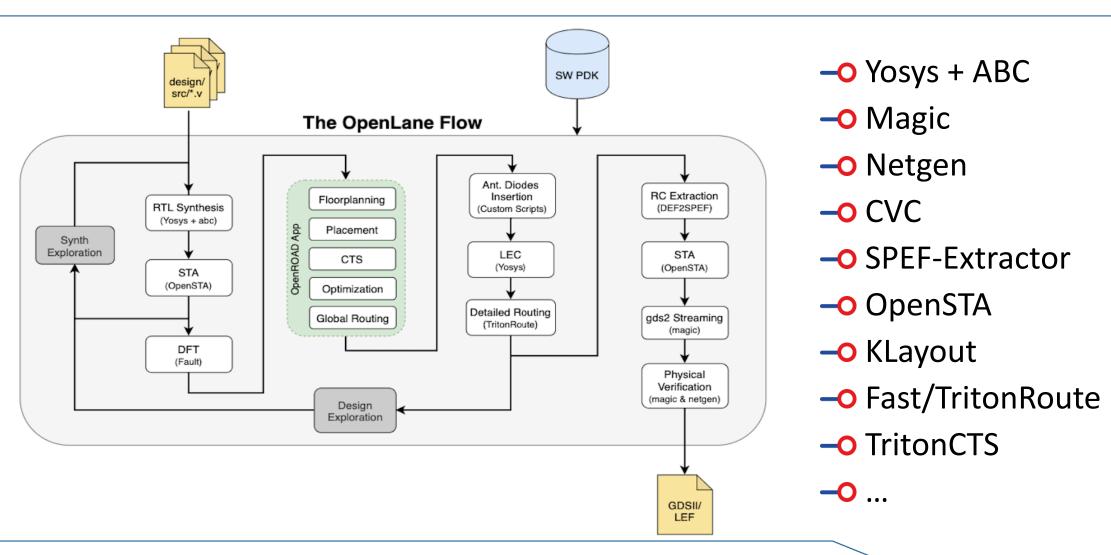

for high
performance
microelectronics

OpenPDK SG13G2 – Current Status, Roadmap and Open Questions

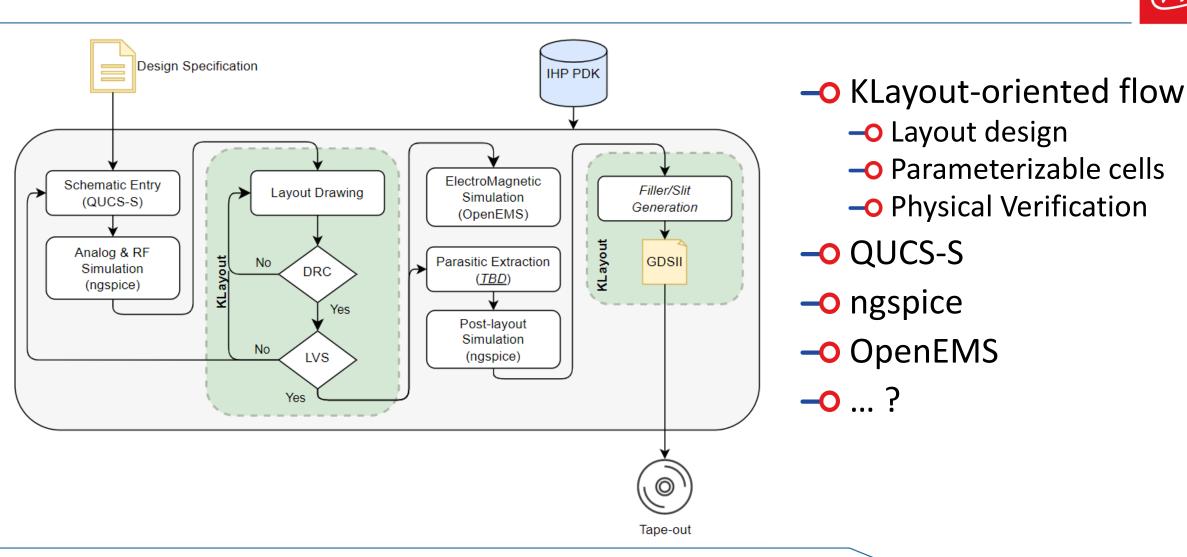
Sergei Andreev – Scientist Technology / Research & Prototyping Service

Networking Workshop FMD-QNC 'OpenPDK, OpenTooling and Open Source Design – An Initiative to Push Development'

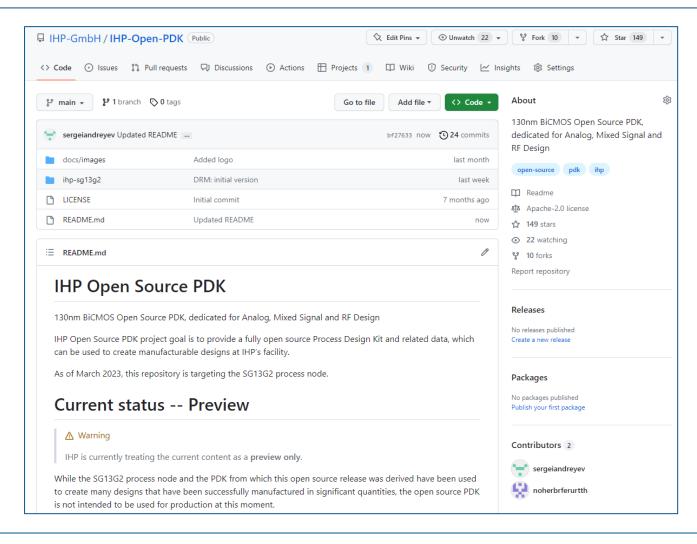
June 27/28 2023



- 1. IHP Open Source EDA Flows Proposals
- 2. OpenPDK Project on GitHub
- 3. Dedicated OpenPDK Virtual Linux Host Machine
- 4. Available OpenPDK Data
- 5. Open Questions
- 6. Next Steps / Planned Updates
- 7. Summary / Goals

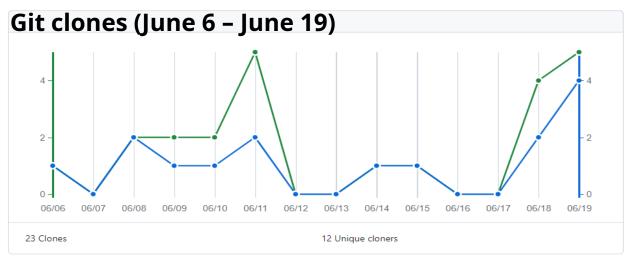

Digital Open Source Development Flow

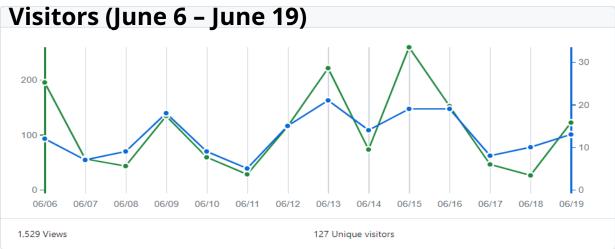
Analog/RF OpenPDK/EDA Flow Proposal



- 1. | IHP Open Source EDA Flows Proposals
- 2. OpenPDK Project on GitHub
- 3. Dedicated OpenPDK Virtual Linux Host Machine
- 4. Available OpenPDK Data
- 5. Open Questions
- 6. Next Steps / Planned Updates
- 7. Summary / Goals

OpenPDK Project on GitHub




PDK Contents:

- Base cell set with limited set of standard logic cells (Open130-G2)
- GDSII view of primitive devices
- KLayout layer property and tech files
- SPICE Models of HBT devices
- OpenEMS: tutorials, scripts, documentation
- SG13G2 Process specification
- → SG13G2 Layout Rules
- MOS/HBT Measurements in MDM format
- Project Roadmap Gantt chart

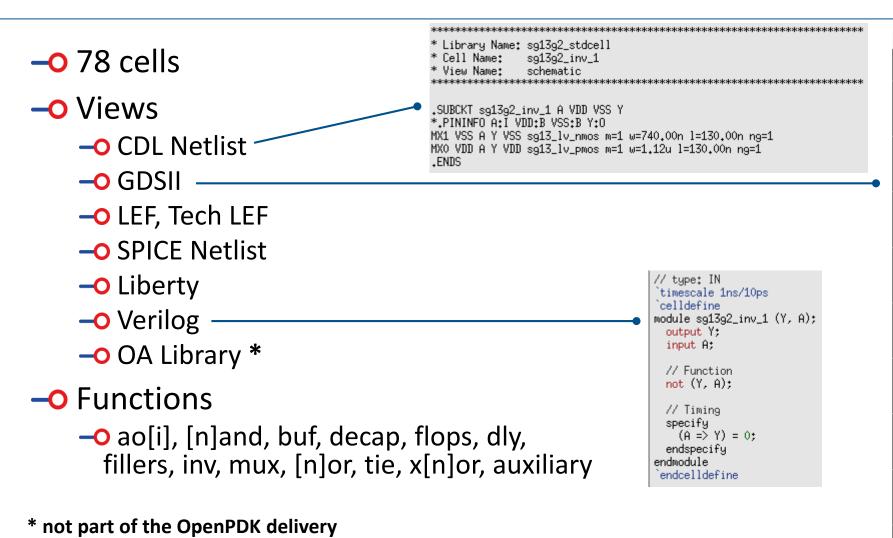
OpenPDK GitHub Project Traffic (last two weeks)

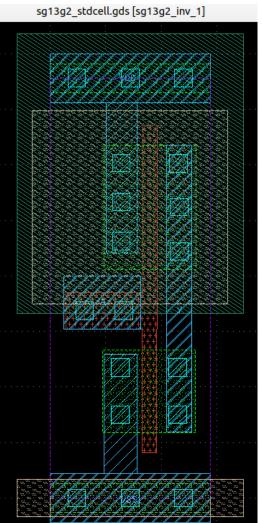
Referring sites		
Site	Views	Unique visitors
⊕ Google	507	45
⊕ github.com	222	8
⊕ t.co	67	8
mgspice.sourceforge.io	25	3
⊕ linkedin.com	20	1
⊕ DuckDuckGo	8	4
infineon.webex.com	6	1
⊕ cn.bing.com	6	1
→ yandex.ru	1	1
ecosia.org	1	1

- 1. | IHP Open Source EDA Flows Proposals
- 2. OpenPDK Project on GitHub
- 3. Dedicated OpenPDK Virtual Linux Host Machine
- 4. Available OpenPDK Data
- 5. Open Questions
- 6. Next Steps / Planned Updates
- 7. Summary / Goals

Dedicated OpenPDK Virtual Linux Host Machine

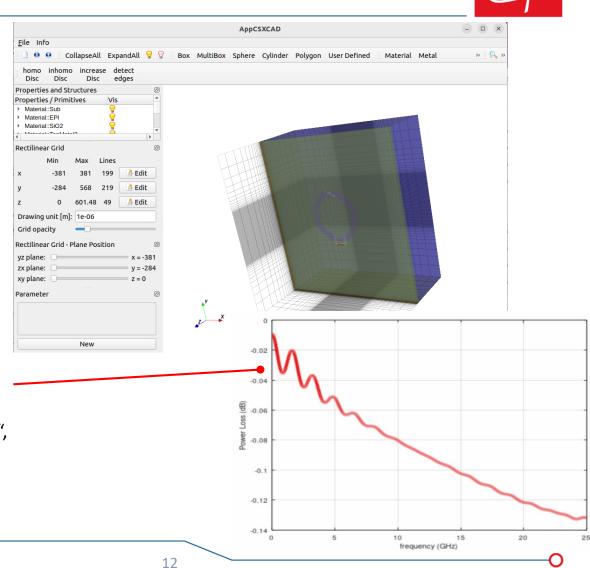
- Virtual Machine (VMWare VSphere) with Linux OS
 - **→** 4 CPU
 - → Memory 16GB
 - -0 HD 1TB
 - OS Ubuntu 22.04.2 LTS
 - → SSH, FTP, ThinLinc servers
 - Only internal users by request
 - Automatic backup every 24h at night


PDK	sky130 [GitHub, open_pdks]
Layout	KLayout [Deb package, v0.28] Magic [GitHub] KiCAD [6.0.2] gdspy [1.6.12] netgen [GitHub]
Schematic	Xschem [GitHub] QUCS-S [GitHub] Revolution EDA [GitHub]
Simulation	Ngspice [GitHub] Xyce [GitHub] spectre2spice [GitHub]
Modeling	DMT [GitHub, user-level] OpenVAF [23.2.0]
EM	OpenEMS [GitHub] Octave [6.4.0]
Flows	Open_pdks [GitHub, user-level] OpenLane [GitHub, user-level]
PCells	OpenPCells [GitHub, user-level] Magic TCL & KLayout Python Pcells [GitHub, sky130]
Gen	PDKMaster [0.9.0, PyPi]
Documentation	doxygen [1.9.1] graphviz [2.43.0]

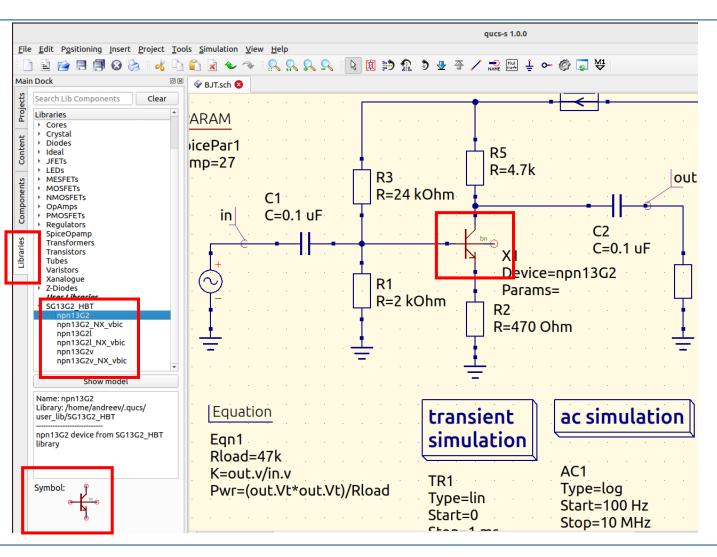


- 1. | IHP Open Source EDA Flows Proposals
- 2. OpenPDK Project on GitHub
- 3. Dedicated OpenPDK Virtual Linux Host Machine
- 4. Available OpenPDK Data
- 5. Open Questions
- 6. Next Steps / Planned Updates
- 7. Summary / Goals

Base Cell Set with Digital Standard Cells



OpenEMS ElectroMagnetic Solver Review



- **─** 3D FDTD solution targeting RF EM simulations
- Model built by Python or Octave/Matlab scripting
- Graphical viewer for model + mesh (CSXCAD)
- → Some interfaces to EDA packages, but no KLayout support yet
- No internal support for GDSII import, interface was created using Python library gdspy
- Variable FDTD grid spacing, mesh smoothing
- Semiconductor substrate support (permittivity + conductivity)
- S-Parameter output
- Useful tutorials for RF examples
- Possible issue: small residual energy at low frequency or DC might create DC leakage in simulation results
 - Efficient solution in commercial FDTD tools is "resonance estimation", but that is not implemented in OpenEMS so far
- O Mostly manual mesh definition
 - -o automatic meshing add-on project (OpenMesh) unfinished

QUCS-S Custom Library with IHP OpenPDK Devices


```
<Symbol>
  <Line -30 0 10 0 #000080 2 1>
  <Line -20 0 10 0 #800000 2 1>
  <Line 0 -15 0 -5 #800000 2 1>
  <Line -10 -5 10 -10 #800000 2 1>
  <Line 0 -20 0 -10 #800000 2 1>
  <Line 0 -20 0 -10 #800000 2 1>
  <Line -10 5 10 10 #800000 2 1>
  <Line -6 15 6 0 #800000 2 1>
  <Line 0 9 0 11 #800000 2 1>
  <Line 0 9 0 10 #000080 2 1>
  <Line 0 10 0 0 #800000 2 1>
  <Line -10 0 20 0 #800000 2 1>
  <Line -10 -15 0 30 #800000 3 1>
  <Text 5 -10 5 #005500 0 "bn">
  <.PortSym 0 -30 1 90>
  <.PortSym 0 -30 1 90>
  <.PortSym 0 30 3 270>
  <.PortSym 20 0 4 180>
  <.ID 10 10 X>
  </Symbol>
```

Directory structure of user lib:

```
~/.qucs/

— user_lib

|— SG13G2_HBT

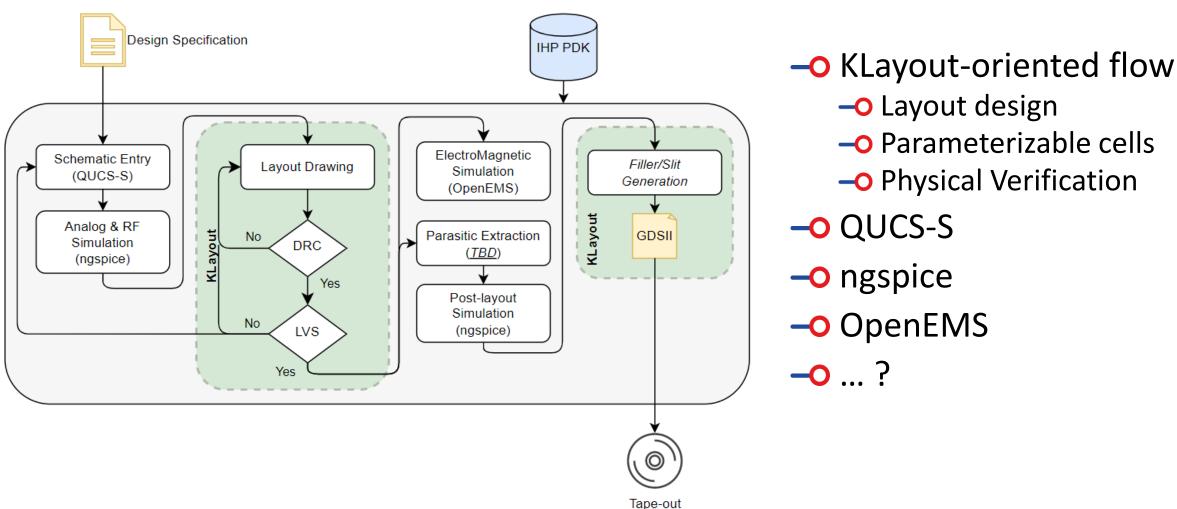
| SG13G2_HBT.sym

— SG13G2_HBT.lib*
```

^{*} HSPICE models file from OpenPDK without any modifications

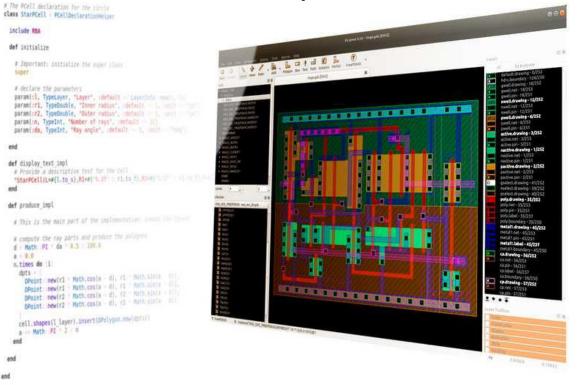
Resistor Models

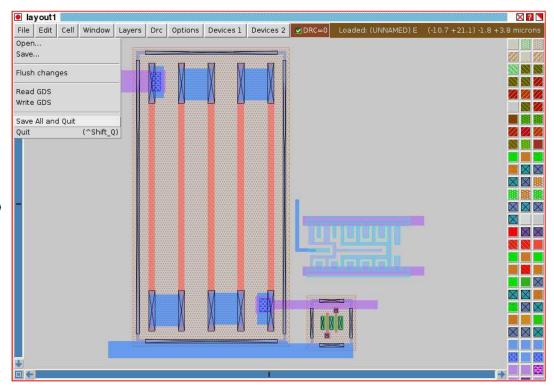
- Spice Models Ready for
 - Rsil (Rs= 7 Ω/\Box)
 - \multimap Rhigh (Rs= 1360 Ω/□)
 - \rightarrow Rppd (Rs= 260 Ω/\Box)
- Temperature Modeling
- Noise Modeling
- Ngspice, Xyce compatible
- Non-linear effects not included:
 - Self heating
 - Velocity saturation
 - **→** ...
- Working on adapting R3 CMC resistor model.


Simple linear spice semiconductor resistor model

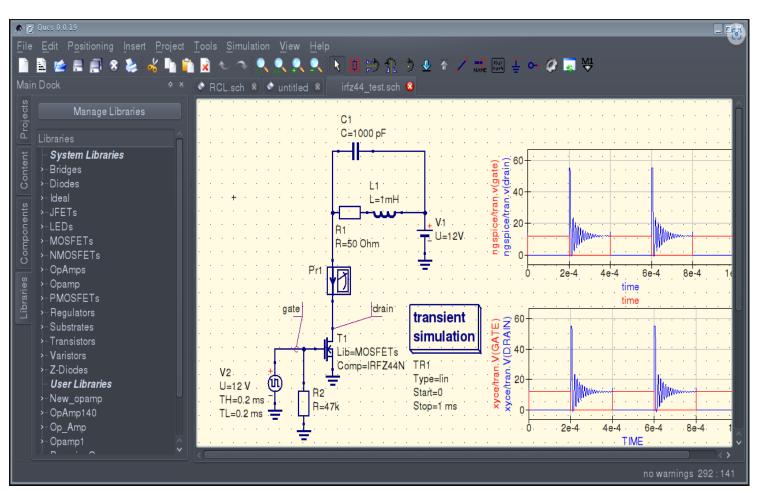
- 1. IHP Open Source EDA Flows Proposals
- 2. OpenPDK Project on GitHub
- 3. Dedicated OpenPDK Virtual Linux Host Machine
- 4. Available OpenPDK Data
- 5. Open Questions
- 6. Next Steps / Planned Updates
- 7. Summary / Goals

Analog/RF OpenPDK/EDA Flow Proposal



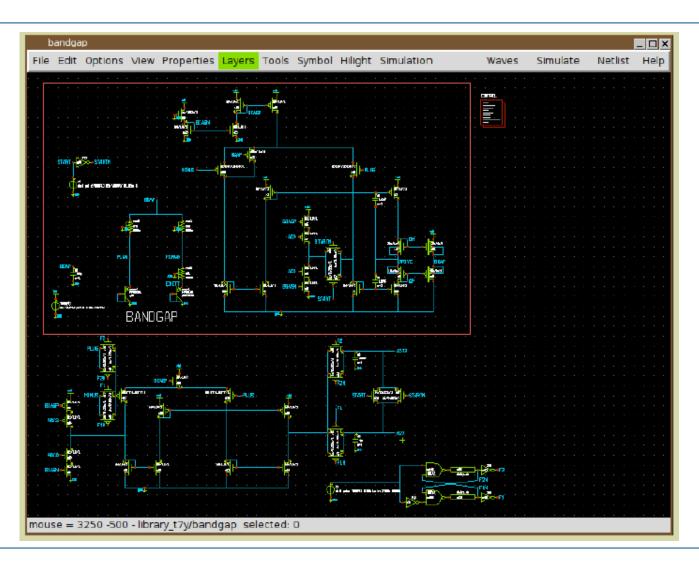

Layout Design: should we support Magic VLSI?

KLayout



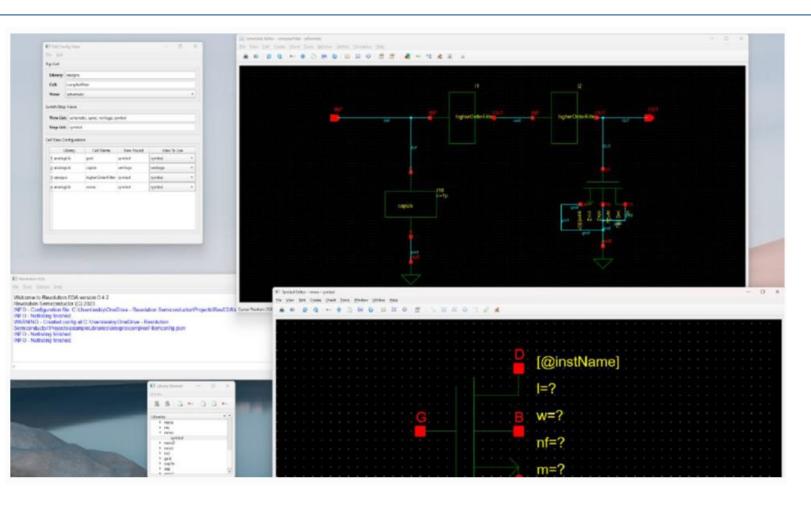
Magic

Circuit Design: QUCS-S / Xschem / Revolution EDA



- Direct support of SPICE models from components datasheets
- Basic and Advanced SPICE components and simulations
- Direct support of SPICE Modelcards, SPICE sections (.IC, .NODESET)
- Parametric circuits (.PARAM) and SPICE postprocessor (Nutmeg)
- Single-tone and Multitone Harmonic balance analysis w/ XYCE backend
- Nutmeg script simulation
- XYCE script simulation type and digital device library
- XSPICE CodeModel synthesizer
- User mathematical functions definitions with .FUNC (added in 0.0.20)

Circuit Design: QUCS-S / Xschem(?) / Revolution EDA



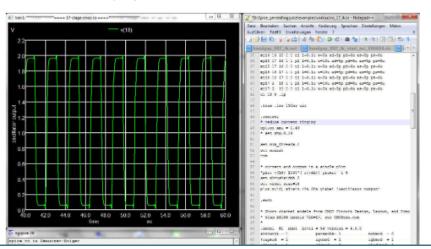
- Hierarchical representation of circuits
- Generate circuit netlists for SPICE, Verilog, VHDL, tEDAx
- Components: primitives, behavioral blocks, subcircuit blocks
- True mixed mode circuit description: Analog, Behavioral, Transistor-level, Gate-level
- Efficient handling of Very large designs, no scripting language for intensive computations
- → GUI and scripting language with Tcl-Tk
- Vector instances and bus notations like DATA[15:0,31:16]
- TCL API for forward / backward annotation to / from 3rd party EDA software
- Used for SkyWater OpenPDK

Circuit Design: QUCS-S / Xschem / Revolution EDA(?)

- Revolution EDA has robust symbol and schematic entry tools
 - → All-around Python based.
 - → Built-in Python console.
 - State-of-the-art QT6 toolkit.
 - Shared-source (MPL modified with Commons Clause)
- **→** Big ambitions:
 - Layout Editor
 - Simulation GUI cockpit
 - Al in circuit design, and much more...

Simulation: should we support Xyce?

Home What is ngspice ? Features, Extras & Options F.A.Q. Tutorials Introductory and update videos Sourceforge Developer


ngspice - open source spice simulator

ngspice is the open source spice simulator for electric and electronic circuits.

Such a circuit may comprise of JFETs, bipolar and MOS transistors, passive elements like R, L, or C, diodes, transmission lines and other devices, all interconnected in a netlist. Digital circuits are simulated as well, event driven and fast, from single gates to complex circuits. And you may enter the combination of both analog and digital as a mixed-signal circuit.

ngspice offers a wealth of device models for active, passive, analog, and digital elements. Model parameters are provided by our <u>collections</u>, by the <u>semiconductor device manufacturers</u>, or from <u>semiconductor foundries</u>. The user adds her circuits as a netlist, and the output is one or more graphs of currents, voltages and other electrical quantities or is saved in a data file.

ngspice does not provide schematic entry. Its input is command line or file based. There are however third party interfaces available.

About Xyce

Xyce is an open source, SPICE-compatible, high-performance analog circuit simulator, capable of solving extremely large circuit problems by supporting large-scale parallel computing platforms. It also supports serial execution on all common desktop platfori small-scale parallel runs on Unix-like systems. In addition to analog electronic simula: Xyce has also been used to investigate more general network systems, such as neural networks and power grids. Read more about Xyce.

- 1. | IHP Open Source EDA Flows Proposals
- 2. OpenPDK Project on GitHub
- 3. Dedicated OpenPDK Virtual Linux Host Machine
- 4. Available OpenPDK Data
- 5. Open Questions
- 6. Next Steps / Planned Updates
- 7. Summary / Goals

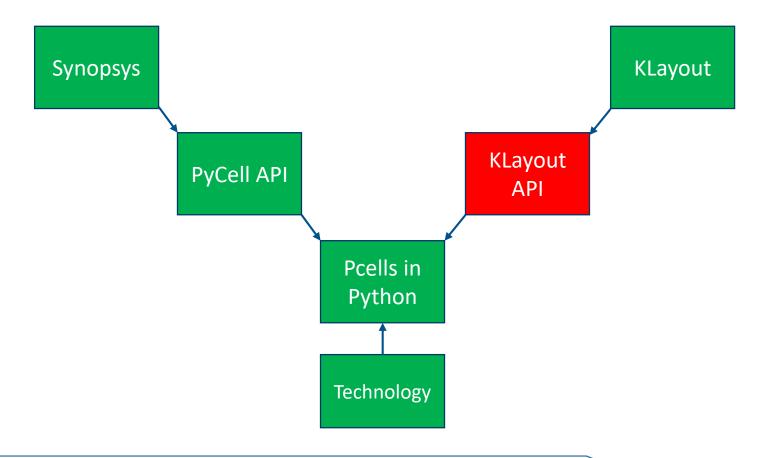
Next Steps / Planned Updates

- Start set of Digital cells
 - Additional cells in development by ETH Zurich + community
- LEF view for primitive devices
- KLayout Technology file
 - Add connectivity section
- **⊸** Need help on:
 - MOS SPICE models
 - PCells

→ Tasks on GitHub:

	Title	Status	•••
1	O Ngspice: 'ignored parameter' messages for HBT models	Done	-
2	C Start set of Digital cells	Done	-
3	Digital standard cells enhancements (increased set)	In Progress	-
4	C LEF view for primitive devices	Todo	~
5	() MOS HSPICE models	Todo	-
6	() KLayout Tech file	Done	~
7	O DRM for Opensource PDK	Done	-
8	O QUCS-S Library w/ IHP OpenPDK devices	In Progress	-
9	Move documentation to ReadTheDocs framework	Todo	-
10	() PyCells	Todo	,

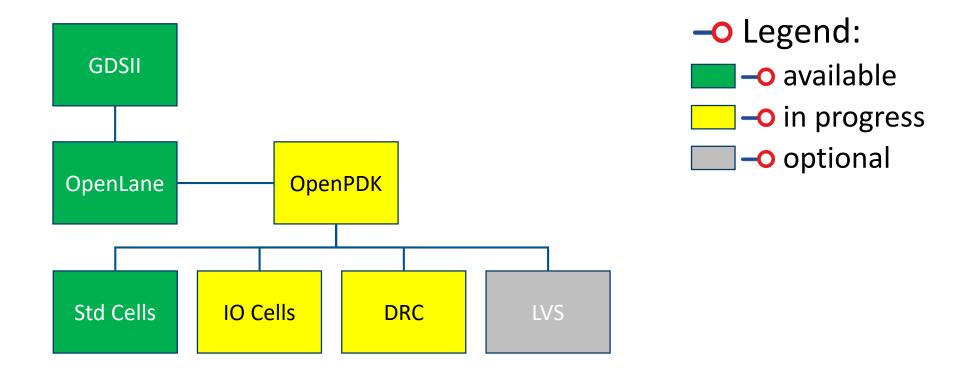
MOS SPICE Models



- SG13G2 MOS Spectre models to SPICE format conversion to use with ngspice/Xyce simulators
 - **→** supported:
 - extreme value behavior, corner cases
 - transistor layout data transfer
 - drain/source area calculations using the fingers number
 - some Spectre commands/instructions/statements not supported:
 - geometry checks
 - static and dynamic states checks
 - -o statistical variations

OpenPDK Pcells

SG13G2 Synopsys PyCells to KLayout Python Pcells conversion



- 1. | IHP Open Source EDA Flows Proposals
- 2. OpenPDK Project on GitHub
- 3. Dedicated OpenPDK Virtual Linux Host Machine
- 4. Available OpenPDK Data
- 5. Open Questions
- 6. Next Steps / Planned Updates
- 7. Summary / Goals

Summary / Goals

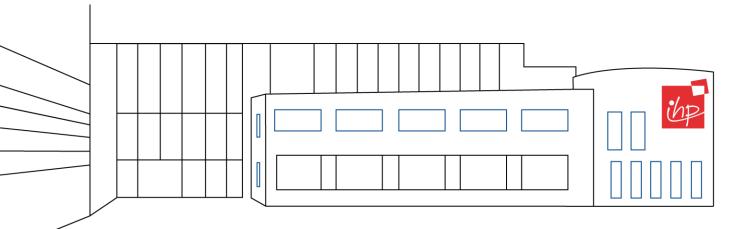
→ First phase goal → Digital design submitted w/ core expert group in Dec Y23

Acknowledgment

- Thanks to my colleagues at IHP
- Thanks to ETH Zurich + open source community
- Separate thanks to Volker Mühlhaus for work on the EM solvers
- And final thanks to different public founded German projects:
 - → VE-HEP (16KIS1339K) https://elektronikforschung.de/projekte/ve-hep-1
 - -O IHP Open130-G2 (16ME0852) https://www.elektronikforschung.de/projekte/ihp-open130-g2
 - FMD-QNC (16ME0831) https://www.elektronikforschung.de/projekte/fmd-qnc
 - Workshop funding FMD-QNC with VDI/VDE (project management agency) approval

SPONSORED BY THE

Thank you for your attention!


IHP – Leibniz Institute for High Performance Microelectronics

Im Technologiepark 25

15236 Frankfurt (Oder)

Tel.: +49 (0) 335 5625 733

E-Mail: andreev@ihp-microelectronics.com

