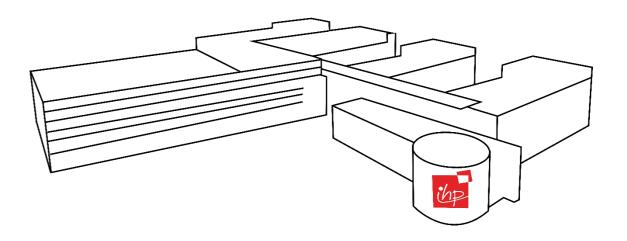


Leibniz Institute for high performance microelectronics

Introduction FMD-QNC project status and IHP OpenPDK Roadmap

René Scholz – Group Leader Research & Prototyping Service

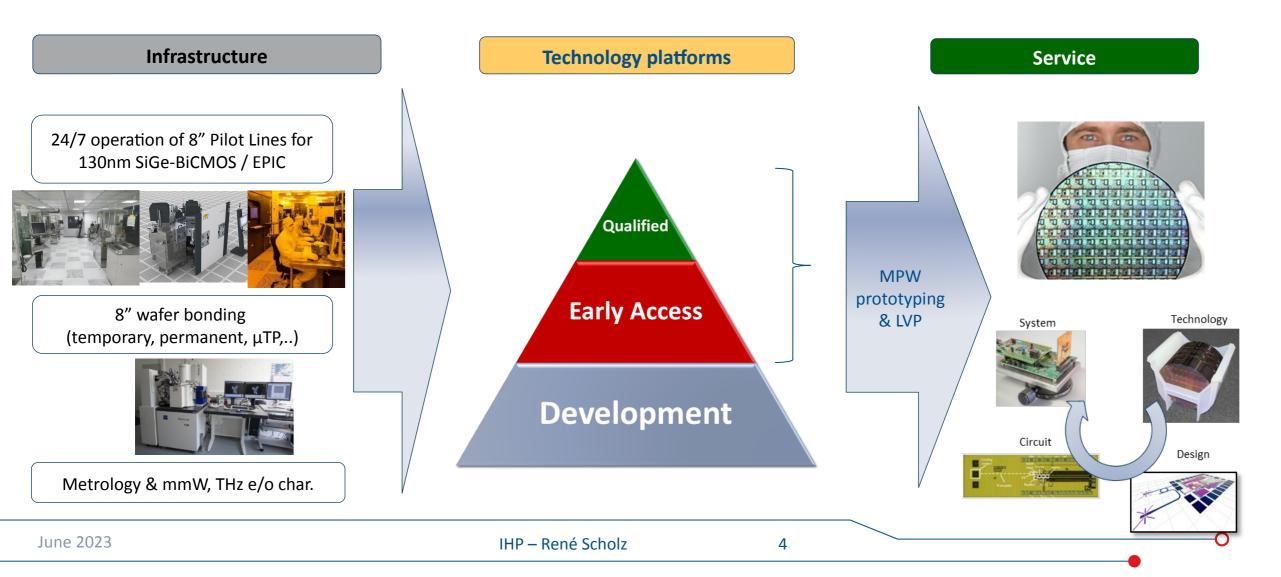
Networking Workshop FMD-QNC OpenPDK, OpenTooling and Open Source Design – An Initiative to Push Development


27th /28th June 2023

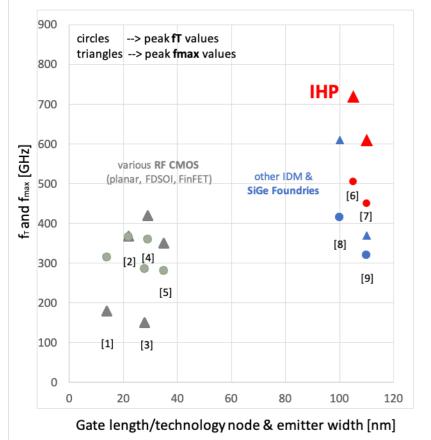
IHP Overview

Our position

- IHP is a European research and innovation center for silicon-based systems, radio frequency circuits and technologies.
- Research focuses on socially relevant topics such as communications, mobility, health & environment, industry & agriculture, sustainability and security
- With its research programs, the IHP makes an important contribution to the technological sovereignty of Germany and Europe



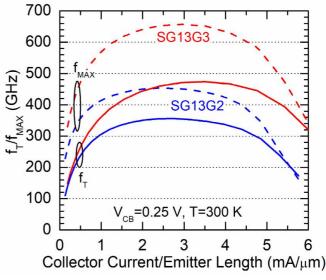
Profile and strenghts


- Vertical research concept from materials research and technology to circuits and systems
- International leadership and visibility in all of its research areas
- Unique selling point of a 200mm pilot line for state-of-the-art BiCMOS technologies, operated under industry-oriented conditions, 24/7, for the provision of prototypes and small batches
- Qualified technological platform with direct access for science and industry

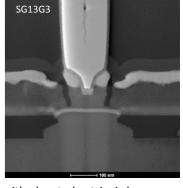
Research & Service in Technology Department

SiGe Heterojunction Bipolar Transistor and BiCMOS

- SiGe BiCMOS targets frequencies and data rates which are out of reach for state-of-the-art CMOS → physical limitations for RF-CMOS
- Compact and highly scalable technology
- Cut-off frequencies (f_T, f_{max}) are
 - Up to 2x higher for SiGe BiCMOS at lower process complexity
 - Typically 3-10x larger than operating frequency
 - +100 GHz application as 6G, D-band communication, radar etc. require SiGe RF technology as a scalable manufacturing technology


Technology complexity increase

Evolution of High Performance BiCMOS Technologies


	SG13S	SG13G2	SG13G3			
$\operatorname{HBT} f_t / f_{max}$	250 / 340 GHz	350 / 500 GHz	470 / 650 GHz			
W _{Emitter}	170 nm	130 nm	110 nm			
HBT BV _{CEO}	1.7 V	1.6 V	1.5 V			
CMOS node	130 nm					
Active devices	Schottky diodes, Antenna diodes, PN diodes, ESD					
Varactors	NMOS Varactor					
Resistors	Poly-Si, 1	Poly-Si				
MIM Caps	1.5 fF / μm² (Al) 2.1 fF / μm² (Cu)	1.5 fF / μm² (Al) 2.1 fF / μm² (Cu)	2.1 fF / μm²			
Metallization	7 Layers AL incl. 2 & 3 μm layers or *Cu: 4 + 2 (3μm) Al: 2 (3μm)	7 Layers AL incl. 2 & 3 μm layers or *Cu: 4 + 2 (3μm) Al: 2 (3μm	*Cu: 4 + 2 (3μm) Al: 2 (3μm			

SG13G2 technology was selected for the development of an open source PDK

 f_t and f_{max} of IHP SG13G2 and SG13G3 technology

TEM cross section of an HBT with elevated extrinsic base regions from (a) the SG13G2 process and (b) a t SG13G3 HBT

IHP – René Scholz

6

*Cu BEOL from X FAB

- Provide low threshold access to technology & design data, PDK and design tools for chip designer, technology developer & academic projects
- Simplify access to education material for chip designer
- Initiate cooperation's and joint projects with open source community
- Support chip design possibilities for small design projects
- Pipe cleaner to demonstrate possibilities and convince commercial fabs to support open source approach

IHP / Open Source in FMD-QNC project

Push Microelectronic Academy – Certified Design Courses & Design Infrastucture

Develop Open-Design-Plattform / Tooling & PDK

Support with Free Area in MPW Runs

- Develop an certified digital Design course (certified) starting 2023
- With with first version of open PDK training on technology, open PDK, open Tools with simple digital and analog design example
- Later (2024, 2025) use RF Design examples (from CoreExpert Group) to develop extend PDK analog design training course
- Schedule training runs 2024 2026 (together with Europractice)

Central Design-Infrastructure for open Tools

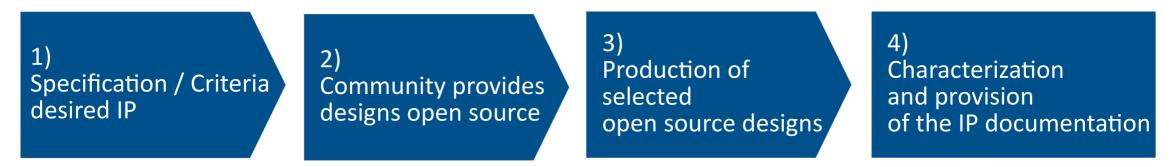
- 2023 Start with test server for existing open tools and PDK (Skywater)
- 2024 Small open cloud server to improve and test open source Tools and IHP PDK
- Use open cloud server for training pilots
- Evaluate Cloud system & container solutions for education and design tasks

Open PDK & open Tool Development

- This provides bases for education of designer and design projects
- IHP started on existing experiences of "Skywater project"
- IHP will dig more in analog design flow later RF design (details in next talk)
- Quality should fulfill requirements for academic education
- Tools must be improved, interface development is crucial
- For a sustainable approach we have to improve capabilities to a level to support productive projects
 - Secure long term funding by MPW & Foundry Service
 - Achieve industrial/non-public funding

Free MPW Runs - support open source PDK & design

Table provides schedule of MPW Runs for FMD-QNC project and planed usage of CoreExpert group and open community


	Jun 23	Dez 23	Jun 24	Dez 24	Apr 25	Jun 25	Dez 25
Fläche [mm²]		25	40	50	280	60	65
Anteil Design Akademie							
CoreExpert Group		25	30	30	140	30	30
open community		0	10	20	140	30	35
ToolBasis							
commerial tools (in %)		50	50	50	30	20	20
open source tools (in %)		50	50	50	70	80	80

- Project funds can be used exclusively to produce chip designs for non-economic activities, such as university education, research projects, and others.
- In the project, a continuation for the provision of free area for the open source community is to be worked out.
 - Goal is to cooperate with IIS / Europractice

Free MPW Runs - support open source PDK & design

Flow for designs from open source community

- 1) At the beginning specifications an criteria will be defined by PDK status, later specifications from sponsors might be possible
- 2) The community can provide designs intended for prototyping via a pull request on an IHP GitHup repository
- 3) Designs will be selected according to the criteria to be developed in 1) and the available space.
- 4) Depending on the requirements, characterization can be done in scientific collaborations by the open community which may wish to use the designs for development and research projects.

- Agree on common goals for a design flow to channel effort
- Synchronize efforts and tasks
- Leveraging community efforts, public funding and corporate contributions.

- Demonstration of successful open source designs
- Demonstration of design training courses in academic institutions
- Example for a commercial successful project

- This work shop is not really for free we want to introduce/promote our goals and ask for cooperation
- Develop Open Source Designs education of a chip design engineers
- Push Open Source Tools user-friendly with short learning curve, but enough features
- Networking / Panel Discussion / Wrap up: Adapt / fine-tune our open PDK roadmap

Acknowledgment

- Thanks to discussion platform Open source semiconductors for EU sovereignty -organized by Matthew Venn
- Thanks to different public founded German projects:

VE-HEP (16KIS1339K) https://elektronikforschung.de/projekte/ve-hep-1

IHP Open130-G2 (16ME0852) https://www.elektronikforschung.de/projekte/ihpopen130-g2

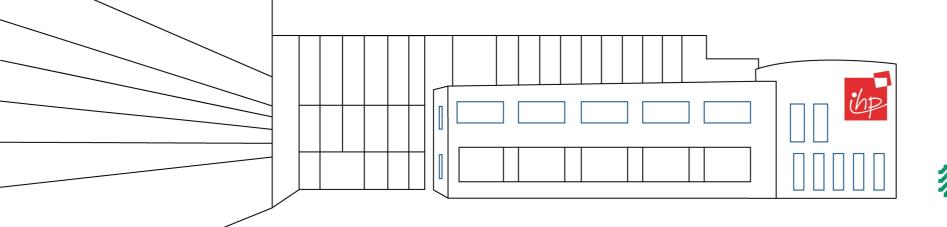
FMD-QNC (16ME0831) https://www.elektronikforschung.de/projekte/fmd-qnc

Workshop funding - FMD-QNC with VDI/VDE (project management agency) approval

Referen	list for slide 6:	
1)	J. Singh et al., Symposium on VLSI Technology, 2017, pp. T140-T14	abrik
2)	J. Singh et al., Symposium on VLSI Technology, 2017, pp. T140-T14 W. Chakraborty et al., Symposium on VLSI Technology, 2021, pp. 1-2. L. Nyssens et al., IEEE Journal of the Electron Devices Society, vol. 8, pp. 646-654, 2020.	anik
3)		
4)	I. Post et al., IEEE International Electron Devices Meeting, 2006, pp. 1-3	
5)	H. Li et al., IEEE Symposium on VLSI Technology, 2007, pp. 56-57,	
6)	B. Heinemann et al, (2016), IEEE International Electron Devices Meeting, pp. 3.1.1-3.1.4,	
7)	H. Rücker et al., 2019, BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)	
8)	V. Jain et al. 2022, IEEE International Electron Devices Meeting, pp. 11.6	
9)	P. Chevalier et al., 2014 IEEE International Electron Devices Meeting, 2014, pp. 3.9.1-3.9.3	
27.06.2023	IHP – René Scholz 16	— 0

SPONSORED BY THE

of Education and Research


ederal Ministry

Thank you for your attention!

IHP – Leibniz-Institut for High Performance Microelectronics

Im Technologiepark 25 15236 Frankfurt (Oder) Tel.: +49 (0) 335 5625 647 E-Mail: scholz@ihp-microelectronics.com

