-
Notifications
You must be signed in to change notification settings - Fork 28
/
app.py
392 lines (323 loc) · 13.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import argparse
import os
os.system("pip install ftfy regex tqdm")
os.system("pip install git+https://github.com/openai/CLIP.git")
import sys
import io
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import clip
import transforms as T
from models import build_model
from predefined_keypoints import *
from util import box_ops
from util.config import Config
from util.utils import clean_state_dict
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from matplotlib import transforms
from torchvision.ops import nms
def text_encoding(instance_names, keypoints_names, model, device):
ins_text_embeddings = []
for cat in instance_names:
instance_description = f"a photo of {cat.lower().replace('_', ' ').replace('-', ' ')}"
text = clip.tokenize(instance_description).to(device)
text_features = model.encode_text(text) # 1*512
ins_text_embeddings.append(text_features)
ins_text_embeddings = torch.cat(ins_text_embeddings, dim=0)
kpt_text_embeddings = []
for kpt in keypoints_names:
kpt_description = f"a photo of {kpt.lower().replace('_', ' ')}"
text = clip.tokenize(kpt_description).to(device)
with torch.no_grad():
text_features = model.encode_text(text) # 1*512
kpt_text_embeddings.append(text_features)
kpt_text_embeddings = torch.cat(kpt_text_embeddings, dim=0)
return ins_text_embeddings, kpt_text_embeddings
def plot_on_image(image_pil, tgt, keypoint_skeleton,keypoint_text_prompt):
num_kpts = len(keypoint_text_prompt)
H, W = tgt["size"]
fig = plt.figure(frameon=False)
dpi = plt.gcf().dpi
fig.set_size_inches(W / dpi, H / dpi)
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
ax = plt.gca()
ax.imshow(image_pil, aspect='equal')
ax = plt.gca()
ax.set_xlim(0, W)
ax.set_ylim(H, 0)
ax.set_aspect('equal')
color_kpt = [[0.00, 0.00, 0.00],
[1.00, 1.00, 1.00],
[1.00, 0.00, 0.00],
[1.00, 1, 00., 0.00],
[0.50, 0.16, 0.16],
[0.00, 0.00, 1.00],
[0.69, 0.88, 0.90],
[0.00, 1.00, 0.00],
[0.63, 0.13, 0.94],
[0.82, 0.71, 0.55],
[1.00, 0.38, 0.00],
[0.53, 0.15, 0.34],
[1.00, 0.39, 0.28],
[1.00, 0.00, 1.00],
[0.04, 0.09, 0.27],
[0.20, 0.63, 0.79],
[0.94, 0.90, 0.55],
[0.33, 0.42, 0.18],
[0.53, 0.81, 0.92],
[0.71, 0.49, 0.86],
[0.25, 0.88, 0.82],
[0.5, 0.0, 0.0],
[0.0, 0.3, 0.3],
[1.0, 0.85, 0.73],
[0.29, 0.0, 0.51],
[0.7, 0.5, 0.35],
[0.44, 0.5, 0.56],
[0.25, 0.41, 0.88],
[0.0, 0.5, 0.0],
[0.56, 0.27, 0.52],
[1.0, 0.84, 0.0],
[1.0, 0.5, 0.31],
[0.85, 0.57, 0.94],
[0.00, 0.00, 0.00],
[1.00, 1.00, 1.00],
[1.00, 0.00, 0.00],
[1.00, 1, 00., 0.00],
[0.50, 0.16, 0.16],
[0.00, 0.00, 1.00],
[0.69, 0.88, 0.90],
[0.00, 1.00, 0.00],
[0.63, 0.13, 0.94],
[0.82, 0.71, 0.55],
[1.00, 0.38, 0.00],
[0.53, 0.15, 0.34],
[1.00, 0.39, 0.28],
[1.00, 0.00, 1.00],
[0.04, 0.09, 0.27],
[0.20, 0.63, 0.79],
[0.94, 0.90, 0.55],
[0.33, 0.42, 0.18],
[0.53, 0.81, 0.92],
[0.71, 0.49, 0.86],
[0.25, 0.88, 0.82],
[0.5, 0.0, 0.0],
[0.0, 0.3, 0.3],
[1.0, 0.85, 0.73],
[0.29, 0.0, 0.51],
[0.7, 0.5, 0.35],
[0.44, 0.5, 0.56],
[0.25, 0.41, 0.88],
[0.0, 0.5, 0.0],
[0.56, 0.27, 0.52],
[1.0, 0.84, 0.0],
[1.0, 0.5, 0.31],
[0.85, 0.57, 0.94],
[0.00, 0.00, 0.00],
[1.00, 1.00, 1.00],
[1.00, 0.00, 0.00],
[1.00, 1, 00., 0.00],
[0.50, 0.16, 0.16],
[0.00, 0.00, 1.00],
[0.69, 0.88, 0.90],
[0.00, 1.00, 0.00],
[0.63, 0.13, 0.94],
[0.82, 0.71, 0.55],
[1.00, 0.38, 0.00],
[0.53, 0.15, 0.34],
[1.00, 0.39, 0.28],
[1.00, 0.00, 1.00],
[0.04, 0.09, 0.27],
[0.20, 0.63, 0.79],
[0.94, 0.90, 0.55],
[0.33, 0.42, 0.18],
[0.53, 0.81, 0.92],
[0.71, 0.49, 0.86],
[0.25, 0.88, 0.82],
[0.5, 0.0, 0.0],
[0.0, 0.3, 0.3],
[1.0, 0.85, 0.73],
[0.29, 0.0, 0.51],
[0.7, 0.5, 0.35],
[0.44, 0.5, 0.56],
[0.25, 0.41, 0.88],
[0.0, 0.5, 0.0],
[0.56, 0.27, 0.52],
[1.0, 0.84, 0.0],
[1.0, 0.5, 0.31],
[0.85, 0.57, 0.94]
]
color = []
color_box = [0.53, 0.81, 0.92]
polygons = []
boxes = []
for box in tgt['boxes'].cpu():
unnormbbox = box * torch.Tensor([W, H, W, H])
unnormbbox[:2] -= unnormbbox[2:] / 2
[bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist()
boxes.append([bbox_x, bbox_y, bbox_w, bbox_h])
poly = [[bbox_x, bbox_y], [bbox_x, bbox_y + bbox_h], [bbox_x + bbox_w, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y]]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
color.append(color_box)
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1)
ax.add_collection(p)
p = PatchCollection(polygons, facecolor='none', linestyle="--", edgecolors=color, linewidths=1.5)
ax.add_collection(p)
if 'keypoints' in tgt:
sks = np.array(keypoint_skeleton)
# import pdb;pdb.set_trace()
if sks !=[]:
if sks.min()==1:
sks = sks - 1
for idx, ann in enumerate(tgt['keypoints']):
kp = np.array(ann.cpu())
Z = kp[:num_kpts*2] * np.array([W, H] * num_kpts)
x = Z[0::2]
y = Z[1::2]
if len(color) > 0:
c = color[idx % len(color)]
else:
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
for sk in sks:
plt.plot(x[sk], y[sk], linewidth=1, color=c)
for i in range(num_kpts):
c_kpt = color_kpt[i]
plt.plot(x[i], y[i], 'o', markersize=4, markerfacecolor=c_kpt, markeredgecolor='k', markeredgewidth=0.5)
ax.set_axis_off()
buffer = io.BytesIO()
plt.savefig(buffer, format='png', bbox_inches='tight', pad_inches=0, transparent=True)
buffer.seek(0)
plt.close()
image_with_predict = Image.open(buffer)
return image_with_predict
def load_image(input_image):
# load image
image_pil = input_image.convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, cpu_only=False):
args = Config.fromfile(model_config_path)
args.device = "cuda" if not cpu_only else "cpu"
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_unipose_output(model, image, instance_text_prompt,keypoint_text_prompt, box_threshold,IoU_threshold, cpu_only=False):
# instance_text_prompt: A, B, C, ...
# keypoint_text_prompt: skeleton
instance_list = instance_text_prompt.split(',')
device = "cuda" if not cpu_only else "cpu"
# clip_model, _ = clip.load("ViT-B/32", device=device)
ins_text_embeddings, kpt_text_embeddings = text_encoding(instance_list, keypoint_text_prompt, model.clip_model, device)
target={}
target["instance_text_prompt"] = instance_list
target["keypoint_text_prompt"] = keypoint_text_prompt
target["object_embeddings_text"] = ins_text_embeddings.float()
kpt_text_embeddings = kpt_text_embeddings.float()
kpts_embeddings_text_pad = torch.zeros(100 - kpt_text_embeddings.shape[0], 512,device=device)
target["kpts_embeddings_text"] = torch.cat((kpt_text_embeddings, kpts_embeddings_text_pad), dim=0)
kpt_vis_text = torch.ones(kpt_text_embeddings.shape[0],device=device)
kpt_vis_text_pad = torch.zeros(kpts_embeddings_text_pad.shape[0],device=device)
target["kpt_vis_text"] = torch.cat((kpt_vis_text, kpt_vis_text_pad), dim=0)
# import pdb;pdb.set_trace()
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], [target])
logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"][0] # (nq, 4)
keypoints = outputs["pred_keypoints"][0][:,:2*len(keypoint_text_prompt)] # (nq, n_kpts * 2)
# filter output
logits_filt = logits.cpu().clone()
boxes_filt = boxes.cpu().clone()
keypoints_filt = keypoints.cpu().clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
keypoints_filt = keypoints_filt[filt_mask] # num_filt, 4
keep_indices = nms(box_ops.box_cxcywh_to_xyxy(boxes_filt), logits_filt.max(dim=1)[0], iou_threshold=IoU_threshold)
# Use keep_indices to filter boxes and keypoints
filtered_boxes = boxes_filt[keep_indices]
filtered_keypoints = keypoints_filt[keep_indices]
return filtered_boxes,filtered_keypoints
# return boxes_filt,keypoints_filt
def run_unipose(input_image, instance_text_prompt, keypoint_text_example,box_threshold,IoU_threshold):
if keypoint_text_example in globals():
keypoint_dict = globals()[keypoint_text_example]
keypoint_text_prompt = keypoint_dict.get("keypoints")
keypoint_skeleton = keypoint_dict.get("skeleton")
elif instance_text_prompt in globals():
keypoint_dict = globals()[instance_text_prompt]
keypoint_text_prompt = keypoint_dict.get("keypoints")
keypoint_skeleton = keypoint_dict.get("skeleton")
else:
# keypoint_find = predefined_keypoints_find(instance_text_prompt, cpu_only=False)
keypoint_dict = globals()["animal"]
keypoint_text_prompt = keypoint_dict.get("keypoints")
keypoint_skeleton = keypoint_dict.get("skeleton")
# load image
image_pil, image = load_image(input_image)
# run model
boxes_filt,keypoints_filt = get_unipose_output(
model, image, instance_text_prompt, keypoint_text_prompt, box_threshold,IoU_threshold, cpu_only=False
)
# visualize pred
size = image_pil.size
pred_dict = {
"boxes": boxes_filt,
"keypoints": keypoints_filt,
"size": [size[1], size[0]]
}
# import ipdb; ipdb.set_trace()
image_with_predict = plot_on_image(image_pil, pred_dict,keypoint_skeleton,keypoint_text_prompt)
return image_with_predict
parser = argparse.ArgumentParser("UniPose Inference", add_help=True)
args = parser.parse_args()
# cfg
config_file = "config_model/UniPose_SwinT.py" # change the path of the model config file
checkpoint_path = "./unipose_swint.pth" # change the path of the model
# load model
model = load_model(config_file, checkpoint_path, cpu_only=False)
if __name__ == "__main__":
MARKDOWN = \
"""
## UniPose: Detecting Any Keypoints
[GitHub](https://github.com/IDEA-Research/UniPose) | [Paper](http://arxiv.org/abs/2310.08530) | [Project Page](https://yangjie-cv.github.io/UniPose/)
If UniPose is helpful for you, please help star the GitHub Repo. Thanks!
"""
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
instance_prompt = gr.Textbox(label="Instance Prompt")
keypoint_example = gr.Textbox(label="Keypoint Example",info="Support predefined keypoints: 1) Articulated Objects: person, face, hand, animal_in_AnimalKindom, animal_in_AP10K, animal_face, fly, locust; 2) Rigid Objects: car, table, chair, bed, sofa, swivelchair; 3) Soft Objects: short_sleeved_shirt, long_sleeved_outwear, short_sleeved_outwear, sling, vest, long_sleeved_dress, long_sleeved_shirt, trousers, sling_dress, vest_dress, skirt, short_sleeved_dress, shorts")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.1, step=0.001
)
IoU_threshold = gr.Slider(
label="IoU Threshold", minimum=0.0, maximum=1.0, value=0.9, step=0.001
)
with gr.Column():
gallery = gr.outputs.Image(
type="pil",
).style(full_width=True, full_height=True)
run_button.click(fn=run_unipose, inputs=[
input_image, instance_prompt, keypoint_example,box_threshold,IoU_threshold], outputs=[gallery])
block.launch(share=True)