diff --git a/coq/QLearn/jaakkola_vector.v b/coq/QLearn/jaakkola_vector.v index e28b835a..09f82469 100644 --- a/coq/QLearn/jaakkola_vector.v +++ b/coq/QLearn/jaakkola_vector.v @@ -3367,6 +3367,20 @@ Section jaakola_vector2. apply H10. Qed. + Lemma lemma3_counter_prob_choice (d1 d2 : R) : + d1 > 1 -> + d2 < 1 -> + exists p, 0 < p < 1 /\ p * d1 + (1-p)*d2 = 1. + Proof. + exists ((1-d2)/(d1-d2)). + split. + - split. + + apply Rdiv_lt_0_compat; lra. + + rewrite <- Rdiv_lt_1; lra. + - field_simplify; try lra. + apply Rdiv_diag; lra. + Qed. + Lemma vecrvclip_max_bound (rvec : Ts -> vector R (S N)) (C : posreal) : forall a, Rvector_max_abs (vecrvclip (S N) rvec (pos_to_nneg C) a) <= C. @@ -7044,7 +7058,7 @@ Proof. ((FiniteConditionalVariance_new prts (filt_sub k) (vecrvnth i pf (XF k)) (rv := vecrvnth_rv i pf (XF k) (rv := vec_rvXF_I filt_sub XF k))) ω) <= (C * (1 + scaled_norm(X k ω) W)^2)))) -> - (**r X (k + 1) = (1 - α_κ) * Χ (k) + β_k * XF (k) *) + (**r X (k + 1) = (1 - α_κ) * Χ (k) + β_k * XF (k) defined componentwise *) (forall k, rv_eq (X (S k)) (vecrvplus (vecrvminus (X k) (vecrvmult (α k) (X k))) (vecrvmult (β k) (XF k) ))) ->