This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathegcn_o.py
169 lines (126 loc) · 5.37 KB
/
egcn_o.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import utils as u
import torch
from torch.nn.parameter import Parameter
import torch.nn as nn
import math
class EGCN(torch.nn.Module):
def __init__(self, args, activation, device='cpu', skipfeats=False):
super().__init__()
GRCU_args = u.Namespace({})
feats = [args.feats_per_node,
args.layer_1_feats,
args.layer_2_feats]
self.device = device
self.skipfeats = skipfeats
self.GRCU_layers = []
self._parameters = nn.ParameterList()
for i in range(1,len(feats)):
GRCU_args = u.Namespace({'in_feats' : feats[i-1],
'out_feats': feats[i],
'activation': activation})
grcu_i = GRCU(GRCU_args)
#print (i,'grcu_i', grcu_i)
self.GRCU_layers.append(grcu_i.to(self.device))
self._parameters.extend(list(self.GRCU_layers[-1].parameters()))
def parameters(self):
return self._parameters
def forward(self,A_list, Nodes_list,nodes_mask_list):
node_feats= Nodes_list[-1]
for unit in self.GRCU_layers:
Nodes_list = unit(A_list,Nodes_list)#,nodes_mask_list)
out = Nodes_list[-1]
if self.skipfeats:
out = torch.cat((out,node_feats), dim=1) # use node_feats.to_dense() if 2hot encoded input
return out
class GRCU(torch.nn.Module):
def __init__(self,args):
super().__init__()
self.args = args
cell_args = u.Namespace({})
cell_args.rows = args.in_feats
cell_args.cols = args.out_feats
self.evolve_weights = mat_GRU_cell(cell_args)
self.activation = self.args.activation
self.GCN_init_weights = Parameter(torch.Tensor(self.args.in_feats,self.args.out_feats))
self.reset_param(self.GCN_init_weights)
def reset_param(self,t):
#Initialize based on the number of columns
stdv = 1. / math.sqrt(t.size(1))
t.data.uniform_(-stdv,stdv)
def forward(self,A_list,node_embs_list):#,mask_list):
GCN_weights = self.GCN_init_weights
out_seq = []
for t,Ahat in enumerate(A_list):
node_embs = node_embs_list[t]
#first evolve the weights from the initial and use the new weights with the node_embs
GCN_weights = self.evolve_weights(GCN_weights)#,node_embs,mask_list[t])
node_embs = self.activation(Ahat.matmul(node_embs.matmul(GCN_weights)))
out_seq.append(node_embs)
return out_seq
class mat_GRU_cell(torch.nn.Module):
def __init__(self,args):
super().__init__()
self.args = args
self.update = mat_GRU_gate(args.rows,
args.cols,
torch.nn.Sigmoid())
self.reset = mat_GRU_gate(args.rows,
args.cols,
torch.nn.Sigmoid())
self.htilda = mat_GRU_gate(args.rows,
args.cols,
torch.nn.Tanh())
self.choose_topk = TopK(feats = args.rows,
k = args.cols)
def forward(self,prev_Q):#,prev_Z,mask):
# z_topk = self.choose_topk(prev_Z,mask)
z_topk = prev_Q
update = self.update(z_topk,prev_Q)
reset = self.reset(z_topk,prev_Q)
h_cap = reset * prev_Q
h_cap = self.htilda(z_topk, h_cap)
new_Q = (1 - update) * prev_Q + update * h_cap
return new_Q
class mat_GRU_gate(torch.nn.Module):
def __init__(self,rows,cols,activation):
super().__init__()
self.activation = activation
#the k here should be in_feats which is actually the rows
self.W = Parameter(torch.Tensor(rows,rows))
self.reset_param(self.W)
self.U = Parameter(torch.Tensor(rows,rows))
self.reset_param(self.U)
self.bias = Parameter(torch.zeros(rows,cols))
def reset_param(self,t):
#Initialize based on the number of columns
stdv = 1. / math.sqrt(t.size(1))
t.data.uniform_(-stdv,stdv)
def forward(self,x,hidden):
out = self.activation(self.W.matmul(x) + \
self.U.matmul(hidden) + \
self.bias)
return out
class TopK(torch.nn.Module):
def __init__(self,feats,k):
super().__init__()
self.scorer = Parameter(torch.Tensor(feats,1))
self.reset_param(self.scorer)
self.k = k
def reset_param(self,t):
#Initialize based on the number of rows
stdv = 1. / math.sqrt(t.size(0))
t.data.uniform_(-stdv,stdv)
def forward(self,node_embs,mask):
scores = node_embs.matmul(self.scorer) / self.scorer.norm()
scores = scores + mask
vals, topk_indices = scores.view(-1).topk(self.k)
topk_indices = topk_indices[vals > -float("Inf")]
if topk_indices.size(0) < self.k:
topk_indices = u.pad_with_last_val(topk_indices,self.k)
tanh = torch.nn.Tanh()
if isinstance(node_embs, torch.sparse.FloatTensor) or \
isinstance(node_embs, torch.cuda.sparse.FloatTensor):
node_embs = node_embs.to_dense()
out = node_embs[topk_indices] * tanh(scores[topk_indices].view(-1,1))
#we need to transpose the output
return out.t()