This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 49
/
engine.py
133 lines (104 loc) · 4.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright IBM All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
"""
Train and eval functions used in main.py
Mostly copy-paste from https://github.com/facebookresearch/deit/blob/main/engine.py
"""
import math
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import accuracy
from einops import rearrange
import utils
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None,
world_size: int = 1, distributed: bool = True, amp=True,
finetune=False
):
if finetune:
model.train(not finetune)
else:
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 50
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
batch_size = targets.size(0)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast(enabled=amp):
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
raise ValueError("Loss is {}, stopping training".format(loss_value))
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
if amp:
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
else:
loss.backward(create_graph=is_second_order)
if max_norm is not None and max_norm != 0.0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device, world_size, distributed=True, amp=False):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
outputs = []
targets = []
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast(enabled=amp):
output = model(images)
if distributed:
outputs.append(concat_all_gather(output))
targets.append(concat_all_gather(target))
else:
outputs.append(output)
targets.append(target)
num_data = len(data_loader.dataset)
outputs = torch.cat(outputs, dim=0)
targets = torch.cat(targets, dim=0)
real_acc1, real_acc5 = accuracy(outputs[:num_data], targets[:num_data], topk=(1, 5))
real_loss = criterion(outputs, targets)
metric_logger.update(loss=real_loss.item())
metric_logger.meters['acc1'].update(real_acc1.item())
metric_logger.meters['acc5'].update(real_acc5.item())
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor.contiguous(), async_op=False)
if tensor.dim() == 1:
output = rearrange(tensors_gather, 'n b -> (b n)')
else:
output = rearrange(tensors_gather, 'n b c -> (b n) c')
return output