Difficulty | Source | Tags | |||
---|---|---|---|---|---|
Medium |
160 Days of Problem Solving |
|
The problem can be found at the following link: Problem Link
Given two strings s1
and s2
, return the minimum number of times s1
has to be repeated so that s2
becomes a substring of the repeated s1
. If s2
cannot be a substring of any repeated version of s1
, return -1
.
Input:
s1 = "ww", s2 = "www"
Output:
2
Explanation: Repeating s1
two times ("wwww"), s2
is a substring of it.
Input:
s1 = "abcd", s2 = "cdabcdab"
Output:
3
Explanation: Repeating s1
three times ("abcdabcdabcd"), s2
is a substring. Less than 3 repeats would not contain s2
.
Input:
s1 = "ab", s2 = "cab"
Output:
-1
Explanation: No matter how many times s1
is repeated, s2
can’t be a substring.
1 ≤ |s1|, |s2| ≤ 10^5
-
Repeated Concatenation Check:
- Initialize a repeated version of
s1
and keep appendings1
to it until its length meets or exceedss2
’s length. - After each append, check if
s2
becomes a substring of this extendeds1
. - If it does, return the number of repetitions used.
- Initialize a repeated version of
-
Pattern Matching with KMP Algorithm:
- Use the KMP (Knuth-Morris-Pratt) algorithm to efficiently search for
s2
within the extended repeated string ofs1
. - The
LPS
(Longest Prefix Suffix) array is computed fors2
to enable efficient substring search.
- Use the KMP (Knuth-Morris-Pratt) algorithm to efficiently search for
-
Edge Cases:
- If
s1
is already a substring ofs2
, return the number of repetitions found. - If no valid repetition count satisfies the substring condition, return
-1
.
- If
- Expected Time Complexity: O(n + m), where
n
is the length ofs1
andm
is the length ofs2
. This is because the KMP algorithm requires linear time to find a substring. - Expected Auxiliary Space Complexity: O(m), as we need additional space to store the
LPS
array fors2
.
class Solution {
public:
int minRepeats(string s1, string s2) {
int repeat = 1;
string repeatedStr = s1;
while (repeatedStr.length() < s2.length()) {
repeatedStr += s1;
repeat++;
}
if (repeatedStr.find(s2) != string::npos)
return repeat;
repeatedStr += s1;
repeat++;
if (repeatedStr.find(s2) != string::npos)
return repeat;
return -1;
}
};
class Solution {
static void computeLPSArray(String s, int[] lps) {
int len = 0, idx = 1;
lps[0] = 0;
while (idx < s.length()) {
if (s.charAt(idx) == s.charAt(len)) {
len++;
lps[idx] = len;
idx++;
} else {
if (len == 0) {
lps[idx] = 0;
idx++;
} else {
len = lps[len - 1];
}
}
}
}
static boolean KMPSearch(String txt, String pat, int[] lps, int rep) {
int n = txt.length(), m = pat.length();
int i = 0, j = 0;
while (i < n * rep) {
if (txt.charAt(i % n) == pat.charAt(j)) {
i++;
j++;
if (j == m) return true;
} else {
if (j != 0) j = lps[j - 1];
else i++;
}
}
return false;
}
static int minRepeats(String s1, String s2) {
int n = s1.length();
int m = s2.length();
int[] lps = new int[m];
computeLPSArray(s2, lps);
int x = (m + n - 1) / n;
if (KMPSearch(s1, s2, lps, x)) return x;
if (KMPSearch(s1, s2, lps, x + 1)) return x + 1;
return -1;
}
}
class Solution:
def computeLPSArray(self, s):
lps = [0] * len(s)
len_ = 0
idx = 1
while idx < len(s):
if s[idx] == s[len_]:
len_ += 1
lps[idx] = len_
idx += 1
else:
if len_ == 0:
lps[idx] = 0
idx += 1
else:
len_ = lps[len_ - 1]
return lps
def KMPSearch(self, txt, pat, lps, rep):
n, m = len(txt), len(pat)
i = j = 0
while i < n * rep:
if txt[i % n] == pat[j]:
i += 1
j += 1
if j == m:
return True
else:
if j != 0:
j = lps[j - 1]
else:
i += 1
return False
def minRepeats(self, s1, s2):
n, m = len(s1), len(s2)
lps = self.computeLPSArray(s2)
x = (m + n - 1) // n
if self.KMPSearch(s1, s2, lps, x):
return x
if self.KMPSearch(s1, s2, lps, x + 1):
return x + 1
return -1
For discussions, questions, or doubts related to this solution, feel free to connect on LinkedIn: Any Questions. Let’s make this learning journey more collaborative!
⭐ If you find this helpful, please give this repository a star! ⭐