-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunetBottleneck.py
93 lines (84 loc) · 3.36 KB
/
unetBottleneck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch.nn as nn
import torch.nn.functional as F
import os
import torch
# 170 vs 250 sec vs 120s
class CnnBlock(nn.Module):
def __init__(self, in_channels, out_channels, skip_final_activation=False):
super().__init__()
self.skip_final_activation = skip_final_activation
self.activation = F.relu
intermediate = max(3, in_channels//4)
self.conv1 = nn.Conv2d(in_channels, intermediate, 1, stride=1, padding=0)
self.conv2 = nn.Conv2d(intermediate, intermediate, 3, stride=1, padding=1)
self.conv3 = nn.Conv2d(intermediate, out_channels, 1, stride=1, padding=0)
self.skip = nn.Conv2d(in_channels, out_channels, 1)
def forward(self, x):
input_x = x
x = self.activation(self.conv1(x))
x = self.activation(self.conv2(x))
x = self.conv3(x)
x = x + self.skip(input_x)
if not self.skip_final_activation:
x = self.activation(x)
return x
class Encoder(nn.Module):
def __init__(self, nchannels):
super().__init__()
self.nchannels = nchannels
self.pool = nn.MaxPool2d(2)
self.blocks = nn.ModuleList([CnnBlock(nchannels[i], nchannels[i+1]) for i in range(len(nchannels)-1)])
def forward(self, x):
features = []
for block in self.blocks:
x = block(x)
features.append(x)
x = self.pool(x)
return features
class UpscaleBlock(nn.Module): # A*A*C -> 2A*2A*C/2
def __init__(self, in_channels, out_channels):
super().__init__()
#self.upscaleLayer = nn.PixelShuffle(2) # A*A*C -> 2A*2A*C/4
self.upscaleLayer = nn.Upsample(scale_factor=2, mode='nearest')
self.pad = nn.ReflectionPad2d(1)
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=0, stride=1)
self.activation = F.relu
def forward(self, x):
x = self.pad(self.upscaleLayer(x))
x = self.conv1(x)
# activation function here?
#x = self.activation(x)
return x
class Decoder(nn.Module):
def __init__(self, nchannels):
super().__init__()
self.nchannels = nchannels
self.upconvs = nn.ModuleList([UpscaleBlock(nchannels[i], nchannels[i]//2) for i in range(len(nchannels)-1)])
self.blocks = nn.ModuleList([CnnBlock(nchannels[i], nchannels[i+1]) for i in range(len(nchannels)-1)])
self.finalUpscale = UpscaleBlock(nchannels[-1], nchannels[-1])
self.finalBlock = CnnBlock(nchannels[-1], 3, skip_final_activation=True)
def forward(self, x, encoder_features):
for i in range(len(self.nchannels)-1):
x = self.upconvs[i](x)
x = torch.cat([x, encoder_features[i]], dim=1)
x = self.blocks[i](x)
temp = encoder_features[i]
del temp
encoder_features[i] = None
x = self.finalUpscale(x)
x = torch.sigmoid(self.finalBlock(x))
return x
class UNet(nn.Module):
# Important! The side lengths of the input image must be divisible depth times by 2. Add padding to nearest multiple when evaluating
# Safe size: current_size + current_size % 2**(len(nchannels)-1)
# Pad to safe size, then crop to correct upscaled size afterwards
def __init__(self, depth=4, init_channels=64):
super().__init__()
#nchannels=[64,128,256,512]
self.nchannels = [init_channels * 2**i for i in range(depth)]
self.encoder = Encoder([3] + self.nchannels)
self.decoder = Decoder(self.nchannels[::-1]) # reverse
def forward(self, x):
encoder_features = self.encoder(x)
out = self.decoder(encoder_features[::-1][0], encoder_features[::-1][1:])
return out