-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainGAN.py
218 lines (167 loc) · 7.74 KB
/
trainGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import csv
import argparse
from concurrent import futures
import os
import re
import sys
import boto3
import botocore
import tqdm
import torch.nn as nn
import torch.nn.functional as F
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from PIL import Image
import time
from multiprocessing import Process, Queue
import os
import numpy as np
import pandas as pd
import random
from dataset import *
from hqset import *
from net import *
from unet import *
from test import predict
from collections import namedtuple
import torch
from torchvision import models
from torchvision.io.image import read_image, ImageReadMode
import common_parameters
from losses import VGG, perceptual_loss, sobel_filter, psnr, AdverserialModel, superHast, catmullHast
from torch.utils.tensorboard import SummaryWriter
if __name__ == '__main__':
torch.multiprocessing.freeze_support()
print('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = UNet(depth=5).to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=common_parameters.learning_rate)
disc = AdverserialModel(256).to(device)
optimizer_disc = torch.optim.Adam(disc.parameters(), lr=common_parameters.learning_rate)
if len(sys.argv) != 3: raise RuntimeError("Two command-line arguments must be given, the model's filename and the type of loss")
filename = sys.argv[1]
loss_str = sys.argv[2]
# criterion is a function that takes the arguments (real_imgs, fake_imgs) in that order!
if loss_str == "mse":
criterion = F.mse_loss
elif loss_str == "l1":
criterion = F.l1_loss
elif loss_str == "sobel":
criterion = lambda real, fake: F.l1_loss(real, fake) + F.l1_loss(sobel_filter(real, device), sobel_filter(fake, device))
elif loss_str == "perceptual":
vgg = VGG().eval().to(device)
criterion = lambda real, fake: F.l1_loss(real, fake) + perceptual_loss(real, fake, vgg)
elif loss_str == "xtra-allt":
vgg = VGG().eval().to(device)
criterion = lambda real, fake: F.l1_loss(real, fake) + F.l1_loss(sobel_filter(real, device), sobel_filter(fake, device)) + 0.2*perceptual_loss(real, fake, vgg)
elif loss_str == "hast":
criterion = lambda real, fake: F.l1_loss(real, fake) + 2*F.l1_loss(superHast(real, device), superHast(fake, device))
elif loss_str == "hastCatmull":
criterion = lambda real, fake: F.l1_loss(real, fake) + 4*F.l1_loss(catmullHast(real, device), catmullHast(fake, device))
else:
raise RuntimeError(loss_str + " is not a valid loss")
writer = SummaryWriter(common_parameters.relative_path + 'runs/' + filename.split('.')[0])
filename = common_parameters.relative_path + filename
iterations, train_losses, val_losses = loadNetGAN(filename, net, optimizer, disc, optimizer_disc, device)
best_loss = min(val_losses) if len(val_losses) > 0 else 1e6
print("Best validation loss:", best_loss)
iteration = iterations[-1] if len(iterations) > 0 else -1
net.train()
net.to(device)
batch_size = common_parameters.batch_size
traindata = FolderSet(common_parameters.relative_path + "train")
validdata = FolderSet(common_parameters.relative_path + "valid")
dataset = DataLoader(traindata, batch_size=batch_size, num_workers = 4)
validation_dataset = DataLoader(validdata, batch_size=batch_size*2)
validation_data = [i for i in validation_dataset]
validation_size = len(validation_data)
#dataset = DataLoader(FolderSet("text"), batch_size=10, num_workers = 7)
print("Datasets loaded")
print_every = 50
save_every = 200
i = iteration
speed_mini = read_image("speed-mini.png", mode=ImageReadMode.RGB).to(device).float() / 255.0
for epoch in range(1000): # loop over the dataset multiple times
running_lossD, running_lossG, running_loss = [],[],[]
train_loss = 0.0
for data in dataset:
i += 1
if i > common_parameters.end_iterations - 1:
break
# get the inputs; data is a list of [inputs, labels]
inputs, real = data
inputs = inputs.to(device)
real = real.to(device)
batch_size = len(inputs)
#real_labels = torch.ones(batch_size).unsqueeze(-1).to(device)
net.zero_grad()
real_out = disc(real)
fakes = net(inputs)
fake_out = disc(fakes)
errG = (torch.mean((real_out - torch.mean(fake_out) + 1)**2) + torch.mean((fake_out - torch.mean(real_out) - 1)**2))/2
loss = 0.001*errG + criterion(real, fakes)
loss.backward(retain_graph=True)
optimizer.step()
disc.zero_grad()
fake_out = disc(fakes.detach())
errD = (torch.mean((real_out - torch.mean(fake_out) - 1)**2) + torch.mean((fake_out - torch.mean(real_out) + 1)**2))/2
errD.backward()
running_lossD.append(errD.item())
optimizer_disc.step()
running_lossG.append(errG.item())
loss_item = loss.item()
running_loss.append(loss_item)
train_loss += loss_item
# print statistics
if i % print_every == 0:
print('[%d, %5d] loss: %.4f' %
(epoch, i, sum(running_loss)/len(running_loss)))
print('[%d, %5d] lossG: %.4f' %
(epoch, i, sum(running_lossG)/len(running_lossG)))
print('[%d, %5d] lossD: %.4f' %
(epoch, i, sum(running_lossD)/len(running_lossD)))
writer.add_scalar("train/loss", sum(running_loss)/len(running_loss), i)
writer.add_scalar("train/loss_generator", sum(running_lossG)/len(running_lossG), i)
writer.add_scalar("train/loss_discriminator", sum(running_lossD)/len(running_lossD), i)
net.train()
running_lossD, running_lossG, running_loss = [],[],[]
if i % save_every == 0:
train_losses.append(train_loss/save_every)
iterations.append(i)
train_loss = 0.0
saveNetGAN(filename, net, optimizer, disc, optimizer_disc, iterations, train_losses, val_losses)
with torch.no_grad():
net.eval()
criterion_loss = 0.0
psnr_score = 0
psnrs = []
for inputs, labels in validation_data:
inputs = inputs.to(device)
real_val = labels.to(device)
fakes_val = net(inputs)
criterion_loss += criterion(real_val, fakes_val).item()
for j in range(len(inputs)):
input = transforms.ToPILImage()(inputs[j,...])
label = labels[j,...]
psnr_score += psnr(real_val, fakes_val).item()
criterion_loss /= validation_size
psnr_score /= validation_size
validation_loss = criterion_loss
val_losses.append(validation_loss)
writer.add_scalar("valid/loss", validation_loss, i)
writer.add_scalar("valid/PSNR", psnr_score, i)
writer.add_image("validation image", net(speed_mini.unsqueeze(0)).squeeze(), i)
print("Validation loss:", validation_loss, "Mean PSNR:", psnr_score)
net.train()
if validation_loss < best_loss:
saveNetGAN(filename + "_best", net, optimizer, disc, optimizer_disc, iterations, train_losses, val_losses)
print(f"New best loss: {best_loss} -> {validation_loss}")
best_loss = validation_loss
print("Saved model!")
# This code makes sure that we break both loops if the inner loop is broken out of:
else:
continue
break
writer.close()