-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
96 lines (81 loc) · 2.71 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import matplotlib.pyplot as plt
from dataset import *
from net import *
from unet import *
def compat_pad(image, network_depth):
n = 2**network_depth
if isinstance(image, Image.Image):
width, height = image.size
elif isinstance(image, torch.Tensor):
shape = image.shape
height, width = shape[1], shape[2]
else:
raise ValueError("image wasn't a PIL image or a Pytorch Tensor")
pad_width = n - width % n
if pad_width == n: pad_width = 0
pad_height = n - height % n
if pad_height == n: pad_height = 0
if pad_width % 2 == 0:
pad_left, pad_right = pad_width//2, pad_width//2
else:
pad_left, pad_right = pad_width//2, pad_width//2 + 1
if pad_height % 2 == 0:
pad_up, pad_down = pad_height//2, pad_height//2
else:
pad_up, pad_down = pad_height//2, pad_height//2 + 1
padding = [pad_left, pad_up, pad_right, pad_down]
padded_im = transforms.Pad(padding)(image)
return padded_im, padding, width, height
def predict(image, net, device):
with torch.no_grad():
im, padding, original_width, original_height = compat_pad(image, 5)
y = net(transforms.ToTensor()(im).unsqueeze(0).to(device)).squeeze()
y = transforms.functional.crop(y, 2*padding[1], 2*padding[0], 2*original_height, 2*original_width)
im = transforms.ToPILImage()(y)
return im
if __name__ == '__main__':
filename = input("Enter model file: ");
imf = input("Enter image file: ")
if imf == "":
OpenDataset([],1).download_image("0a2cc77c7437e2fb")
imf = "imgs/0a2cc77c7437e2fb.jpg"
device_name = "none"
if torch.cuda.is_available():
while device_name != 'cuda' and device_name != 'cpu':
device_name = input("Enter device ('cuda', 'cpu'):")
if device_name == "":
device_name = 'cuda'
else:
device_name = "cpu"
device = torch.device(device_name)
factor_s = input("Enter dimension upscale factor: 2^")
if factor_s == "":
factor = 1
print("=2")
else:
factor = int(factor_s)
print("=",2**factor)
net = UNet(depth=5)
loadNetEval(filename, net, device)
#loadNetEval("/content/drive/MyDrive/Colab Notebooks/" + filename, net, device)
net.to(device)
net.eval()
x = Image.open(imf).convert("RGB")
plt.imshow(x)
plt.show(block=False)
plt.pause(0.05)
#y = net(transforms.ToTensor()(x).unsqueeze(0).to(device))
#im = transforms.ToPILImage()(y.squeeze())
im = predict(x, net, device)
for i in range(factor-1):
im = predict(im,net,device)
im.save("result.png")
plt.figure()
plt.imshow(im)
plt.show(block=False)
plt.pause(0.05)
fig = plt.figure()
y = transforms.Resize((x.size[1]*(2**factor), x.size[0]*(2**factor)), transforms.InterpolationMode.LANCZOS)(x)
plt.imshow(y)
plt.show()
y.save("lanczos.png")