-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateVsPlot.py
57 lines (54 loc) · 1.8 KB
/
generateVsPlot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import matplotlib.pyplot as plt
import torch
import time
import sys
import csv
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from net import *
from losses import *
from hqset import *
from unet import *
import common_parameters
if __name__ == '__main__':
filePairs = [
(("net_l1", "L1"), ("net_l1GAN", "L1 + GAN")),
(("net_mse", "MSE"), ("sobel", "Sobel")),
(("net_perceptualGAN", "Perceptual + GAN"), ("perceptual", "Perceptual")),
(("net_xtraGAN", "Sobel + Perceptual + GAN"), ("GANSobel", "Sobel + GAN")),
(("net_l1GAN", "L1 + GAN"), ("net_mse", "MSE"))
]
("original", "High-res"), ("lanczos", "Lanczos")
rows = 2
columns = 2
foldername = input("Name of the folder (eg 0807): ")
lanczos_im = Image.open("Images/" + foldername + "/lanczos.png")
original_im = Image.open("Images/" + foldername + "/original.png")
for i, filePair in enumerate(filePairs):
im1 = Image.open("Images/" + foldername + "/" + filePair[0][0] + ".png").convert("RGB")
im2 = Image.open("Images/" + foldername + "/" + filePair[1][0] + ".png").convert("RGB")
title1 = filePair[0][1]
title2 = filePair[1][1]
fig = plt.figure(figsize=(10, 10))
plt.title("Comparison of models", y=1.08)
plt.axis("off")
fig.add_subplot(rows, columns, 1)
plt.imshow(original_im)
plt.axis("off")
plt.title("High-res")
fig.add_subplot(rows, columns, 2)
plt.imshow(lanczos_im)
plt.axis("off")
plt.title("Lanczos")
fig.add_subplot(rows, columns, 3)
plt.imshow(im1)
plt.axis("off")
plt.title(title1)
fig.add_subplot(rows, columns, 4)
plt.imshow(im2)
plt.axis("off")
plt.title(title2)
fig.tight_layout(w_pad=-9, h_pad=2)
plt.savefig(foldername + "-" + str(i) + ".png")
#plt.show()