-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsampleMNIST.cpp
480 lines (408 loc) · 15.6 KB
/
sampleMNIST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
/*
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! \file sampleMNIST.cpp
//! \brief This file contains the implementation of the MNIST sample.
//!
//! It builds a TensorRT engine by importing a trained MNIST Caffe model. It uses the engine to run
//! inference on an input image of a digit.
//! It can be run with the following command line:
//! Command: ./sample_mnist [-h or --help] [-d=/path/to/data/dir or --datadir=/path/to/data/dir]
#include "argsParser.h"
#include "buffers.h"
#include "common.h"
#include "logger.h"
#include "NvCaffeParser.h"
#include "NvInfer.h"
#include <algorithm>
#include <cmath>
#include <cuda_runtime_api.h>
#include <fstream>
#include <iostream>
#include <sstream>
using samplesCommon::SampleUniquePtr;
const std::string gSampleName = "TensorRT.sample_mnist";
//!
//! \brief The SampleMNIST class implements the MNIST sample
//!
//! \details It creates the network using a trained Caffe MNIST classification model
//!
class SampleMNIST
{
public:
SampleMNIST(const samplesCommon::CaffeSampleParams& params)
: mParams(params)
{
}
//!
//! \brief Builds the network engine
//!
bool build();
//!
//! \brief Runs the TensorRT inference engine for this sample
//!
bool infer();
//!
//! \brief Used to clean up any state created in the sample class
//!
bool teardown();
private:
//!
//! \brief uses a Caffe parser to create the MNIST Network and marks the
//! output layers
//!
bool constructNetwork(
SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser, SampleUniquePtr<nvinfer1::INetworkDefinition>& network);
//!
//! \brief Reads the input and mean data, preprocesses, and stores the result in a managed buffer
//!
bool processInput(
const samplesCommon::BufferManager& buffers, const std::string& inputTensorName, int inputFileIdx) const;
//!
//! \brief Verifies that the output is correct and prints it
//!
bool verifyOutput(
const samplesCommon::BufferManager& buffers, const std::string& outputTensorName, int groundTruthDigit) const;
std::shared_ptr<nvinfer1::ICudaEngine> mEngine{nullptr}; //!< The TensorRT engine used to run the network
samplesCommon::CaffeSampleParams mParams; //!< The parameters for the sample.
nvinfer1::Dims mInputDims; //!< The dimensions of the input to the network.
SampleUniquePtr<nvcaffeparser1::IBinaryProtoBlob>
mMeanBlob; //! the mean blob, which we need to keep around until build is done
};
//!
//! \brief Creates the network, configures the builder and creates the network engine
//!
//! \details This function creates the MNIST network by parsing the caffe model and builds
//! the engine that will be used to run MNIST (mEngine)
//!
//! \return Returns true if the engine was created successfully and false otherwise
//!
// main入口===============================================================
bool SampleMNIST::build()
{
auto builder = SampleUniquePtr<nvinfer1::IBuilder>(nvinfer1::createInferBuilder(sample::gLogger.getTRTLogger()));
if (!builder)
{
return false;
}
// 生成一个network
auto network = SampleUniquePtr<nvinfer1::INetworkDefinition>(builder->createNetworkV2(0));
if (!network)
{
return false;
}
// 生成一个config
auto config = SampleUniquePtr<nvinfer1::IBuilderConfig>(builder->createBuilderConfig());
if (!config)
{
return false;
}
// 生成一个parse
auto parser = SampleUniquePtr<nvcaffeparser1::ICaffeParser>(nvcaffeparser1::createCaffeParser());
if (!parser)
{
return false;
}
// 构建网络 line266==========================================================bool SampleMNIST::constructNetwork()
if (!constructNetwork(parser, network))
{
return false;
}
// 设置bathsize
builder->setMaxBatchSize(mParams.batchSize);
config->setMaxWorkspaceSize(16_MiB);
config->setFlag(BuilderFlag::kGPU_FALLBACK);
// 设置精度
if (mParams.fp16)
{
config->setFlag(BuilderFlag::kFP16);
}
if (mParams.int8)
{
config->setFlag(BuilderFlag::kINT8);
}
// 设置是否支持DLA DLA:一种深度网络特征融合方法 https://zhuanlan.zhihu.com/p/364196632
samplesCommon::enableDLA(builder.get(), config.get(), mParams.dlaCore);
// CUDA stream used for profiling by the builder.
auto profileStream = samplesCommon::makeCudaStream();
if (!profileStream)
{
return false;
}
config->setProfileStream(*profileStream);
SampleUniquePtr<IHostMemory> plan{builder->buildSerializedNetwork(*network, *config)};
if (!plan)
{
return false;
}
SampleUniquePtr<IRuntime> runtime{createInferRuntime(sample::gLogger.getTRTLogger())};
if (!runtime)
{
return false;
}
// 得到Engine!!!!!!!!===========================
mEngine = std::shared_ptr<nvinfer1::ICudaEngine>(
runtime->deserializeCudaEngine(plan->data(), plan->size()), samplesCommon::InferDeleter());
if (!mEngine)
{
return false;
}
ASSERT(network->getNbInputs() == 1);
mInputDims = network->getInput(0)->getDimensions();
ASSERT(mInputDims.nbDims == 3);
return true;
}
//!
//! \brief Reads the input and mean data, preprocesses, and stores the result in a managed buffer
//!
bool SampleMNIST::processInput(
const samplesCommon::BufferManager& buffers, const std::string& inputTensorName, int inputFileIdx) const
{
const int inputH = mInputDims.d[1];
const int inputW = mInputDims.d[2];
// Read a random digit file
srand(unsigned(time(nullptr)));
std::vector<uint8_t> fileData(inputH * inputW);
readPGMFile(locateFile(std::to_string(inputFileIdx) + ".pgm", mParams.dataDirs), fileData.data(), inputH, inputW);
// Print ASCII representation of digit
sample::gLogInfo << "Input:\n";
for (int i = 0; i < inputH * inputW; i++)
{
sample::gLogInfo << (" .:-=+*#%@"[fileData[i] / 26]) << (((i + 1) % inputW) ? "" : "\n");
}
sample::gLogInfo << std::endl;
float* hostInputBuffer = static_cast<float*>(buffers.getHostBuffer(inputTensorName));
for (int i = 0; i < inputH * inputW; i++)
{
hostInputBuffer[i] = float(fileData[i]);
}
return true;
}
//!
//! \brief Verifies that the output is correct and prints it
//!
bool SampleMNIST::verifyOutput(
const samplesCommon::BufferManager& buffers, const std::string& outputTensorName, int groundTruthDigit) const
{
const float* prob = static_cast<const float*>(buffers.getHostBuffer(outputTensorName));
// Print histogram of the output distribution
sample::gLogInfo << "Output:\n";
float val{0.0f};
int idx{0};
const int kDIGITS = 10;
for (int i = 0; i < kDIGITS; i++)
{
if (val < prob[i])
{
val = prob[i];
idx = i;
}
sample::gLogInfo << i << ": " << std::string(int(std::floor(prob[i] * 10 + 0.5f)), '*') << "\n";
}
sample::gLogInfo << std::endl;
return (idx == groundTruthDigit && val > 0.9f);
}
//!
//! \brief Uses a caffe parser to create the MNIST Network and marks the
//! output layers
//!
//! \param network Pointer to the network that will be populated with the MNIST network
//!
//! \param builder Pointer to the engine builder
//!
bool SampleMNIST::constructNetwork(
SampleUniquePtr<nvcaffeparser1::ICaffeParser>& parser, SampleUniquePtr<nvinfer1::INetworkDefinition>& network)
{
const nvcaffeparser1::IBlobNameToTensor* blobNameToTensor = parser->parse(
mParams.prototxtFileName.c_str(), mParams.weightsFileName.c_str(), *network, nvinfer1::DataType::kFLOAT);
for (auto& s : mParams.outputTensorNames)
{
network->markOutput(*blobNameToTensor->find(s.c_str()));
}
// add mean subtraction to the beginning of the network
nvinfer1::Dims inputDims = network->getInput(0)->getDimensions();
mMeanBlob
= SampleUniquePtr<nvcaffeparser1::IBinaryProtoBlob>(parser->parseBinaryProto(mParams.meanFileName.c_str()));
nvinfer1::Weights meanWeights{nvinfer1::DataType::kFLOAT, mMeanBlob->getData(), inputDims.d[1] * inputDims.d[2]};
// For this sample, a large range based on the mean data is chosen and applied to the head of the network.
// After the mean subtraction occurs, the range is expected to be between -127 and 127, so the rest of the network
// is given a generic range.
// The preferred method is use scales computed based on a representative data set
// and apply each one individually based on the tensor. The range here is large enough for the
// network, but is chosen for example purposes only.
float maxMean
= samplesCommon::getMaxValue(static_cast<const float*>(meanWeights.values), samplesCommon::volume(inputDims));
// 网络
auto mean = network->addConstant(nvinfer1::Dims3(1, inputDims.d[1], inputDims.d[2]), meanWeights);
if (!mean->getOutput(0)->setDynamicRange(-maxMean, maxMean))
{
return false;
}
if (!network->getInput(0)->setDynamicRange(-maxMean, maxMean))
{
return false;
}
auto meanSub = network->addElementWise(*network->getInput(0), *mean->getOutput(0), ElementWiseOperation::kSUB);
if (!meanSub->getOutput(0)->setDynamicRange(-maxMean, maxMean))
{
return false;
}
// 得到网络的输入输出
network->getLayer(0)->setInput(0, *meanSub->getOutput(0));
samplesCommon::setAllDynamicRanges(network.get(), 127.0f, 127.0f);
return true;
}
//!
//! \brief Runs the TensorRT inference engine for this sample
//!
//! \details This function is the main execution function of the sample. It allocates
//! the buffer, sets inputs, executes the engine, and verifies the output.
//!
// step2: 推荐inference===============================================================
bool SampleMNIST::infer()
{
// Create RAII buffer manager object
// 根据engine和batchsize自动生成一块输入的数据和输出的数据====================================
samplesCommon::BufferManager buffers(mEngine, mParams.batchSize);
auto context = SampleUniquePtr<nvinfer1::IExecutionContext>(mEngine->createExecutionContext());
if (!context)
{
return false;
}
// Pick a random digit to try to infer
srand(time(NULL));
const int digit = rand() % 10;
// Read the input data into the managed buffers
// There should be just 1 input tensor
ASSERT(mParams.inputTensorNames.size() == 1);
if (!processInput(buffers, mParams.inputTensorNames[0], digit))
{
return false;
}
// Create CUDA stream for the execution of this inference.
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// Asynchronously copy data from host input buffers to device input buffers
buffers.copyInputToDeviceAsync(stream);
// Asynchronously enqueue the inference work
// 异步推理=====================================================================
// https://www.yuque.com/huangzhongqing/gk5f7m/ysgfhl#IIXGh
if (!context->enqueue(mParams.batchSize, buffers.getDeviceBindings().data(), stream, nullptr)) // getDeviceBindings:直接获得输入和输出的指针的值
{
return false;
}
// Asynchronously copy data from device output buffers to host output buffers
buffers.copyOutputToHostAsync(stream);
// Wait for the work in the stream to complete
cudaStreamSynchronize(stream);
// Release stream
cudaStreamDestroy(stream);
// Check and print the output of the inference
// There should be just one output tensor
ASSERT(mParams.outputTensorNames.size() == 1);
bool outputCorrect = verifyOutput(buffers, mParams.outputTensorNames[0], digit);
return outputCorrect;
}
//!
//! \brief Used to clean up any state created in the sample class
//!
bool SampleMNIST::teardown()
{
//! Clean up the libprotobuf files as the parsing is complete
//! \note It is not safe to use any other part of the protocol buffers library after
//! ShutdownProtobufLibrary() has been called.
nvcaffeparser1::shutdownProtobufLibrary();
return true;
}
//!
//! \brief Initializes members of the params struct using the command line args
//!
samplesCommon::CaffeSampleParams initializeSampleParams(const samplesCommon::Args& args)
{
samplesCommon::CaffeSampleParams params;
if (args.dataDirs.empty()) //!< Use default directories if user hasn't provided directory paths
{
params.dataDirs.push_back("data/mnist/");
params.dataDirs.push_back("data/samples/mnist/");
}
else //!< Use the data directory provided by the user
{
params.dataDirs = args.dataDirs;
}
params.prototxtFileName = locateFile("mnist.prototxt", params.dataDirs);
params.weightsFileName = locateFile("mnist.caffemodel", params.dataDirs);
params.meanFileName = locateFile("mnist_mean.binaryproto", params.dataDirs);
params.inputTensorNames.push_back("data");
params.batchSize = 1;
params.outputTensorNames.push_back("prob");
params.dlaCore = args.useDLACore;
params.int8 = args.runInInt8;
params.fp16 = args.runInFp16;
return params;
}
//!
//! \brief Prints the help information for running this sample
//!
void printHelpInfo()
{
std::cout
<< "Usage: ./sample_mnist [-h or --help] [-d or --datadir=<path to data directory>] [--useDLACore=<int>]\n";
std::cout << "--help Display help information\n";
std::cout << "--datadir Specify path to a data directory, overriding the default. This option can be used "
"multiple times to add multiple directories. If no data directories are given, the default is to use "
"(data/samples/mnist/, data/mnist/)"
<< std::endl;
std::cout << "--useDLACore=N Specify a DLA engine for layers that support DLA. Value can range from 0 to n-1, "
"where n is the number of DLA engines on the platform."
<< std::endl;
std::cout << "--int8 Run in Int8 mode.\n";
std::cout << "--fp16 Run in FP16 mode.\n";
}
int main(int argc, char** argv)
{
samplesCommon::Args args;
bool argsOK = samplesCommon::parseArgs(args, argc, argv);
if (!argsOK)
{
sample::gLogError << "Invalid arguments" << std::endl;
printHelpInfo();
return EXIT_FAILURE;
}
if (args.help)
{
printHelpInfo();
return EXIT_SUCCESS;
}
auto sampleTest = sample::gLogger.defineTest(gSampleName, argc, argv);
sample::gLogger.reportTestStart(sampleTest);
samplesCommon::CaffeSampleParams params = initializeSampleParams(args);
SampleMNIST sample(params);
sample::gLogInfo << "Building and running a GPU inference engine for MNIST" << std::endl;
// step1 build
if (!sample.build())
{
return sample::gLogger.reportFail(sampleTest);
}
// step2 推理inference
if (!sample.infer())
{
return sample::gLogger.reportFail(sampleTest);
}
if (!sample.teardown())
{
return sample::gLogger.reportFail(sampleTest);
}
return sample::gLogger.reportPass(sampleTest);
}