-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframeParameters.py
279 lines (217 loc) · 8.31 KB
/
frameParameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import cv2
import numpy as np
import matplotlib.pyplot as plt
from utilityFunctions.chaosFunctions import *
from utilityFunctions.utils import *
import cv2 as cv
import copy as cp
import random
import pandas as pd
from skimage.measure import shannon_entropy
import os
import time
NUM = 9
np.random.seed(NUM)
random.seed(NUM)
def getFrame(sec):
video.set(cv2.CAP_PROP_POS_MSEC, sec*1000)
hasFrames, image = video.read()
return hasFrames, image
def run_sim(img, genotype1, seq):
start = time.time()
img_params = []
seed_enc = seq
cost, seq, PARAMETERS = encryptImage(img, genotype1, seed_enc)
PARAMETERS.append(cost)
img_params.append(PARAMETERS)
print(f"After 1 generation, cost : {cost} | {print_genotype_vals(genotype1)}")
epochs = 2
while True:
best = 33.46
if abs(best - cost) < 1:
break
genotype2 = cp.deepcopy(genotype1)
mutate_genotype(genotype2)
cost2, seq, PARAMETERS = encryptImage(img, genotype2, seed_enc)
PARAMETERS.append(cost)
img_params.append(PARAMETERS)
if abs(best - cost) > abs(best - cost2):
cost = cost2
genotype1 = cp.deepcopy(genotype2)
print(f"After {epochs} generation, cost : {cost} | {print_genotype_vals(genotype1)}")
epochs += 1
end = time.time()
# print(f"OVERALL TIME TAKEN FOR {epochs} epochs : {round(end - start, 6)}")
# print(f"Genotype after simulation : {print_genotype_vals(genotype1)}\nFitness : {cost}\n\n")
print("IMAGE 1 \n\n\n")
return img_params
def encryptImage(img, genotype, seq):
height, width = img.shape
log_map_seed = genotype[0]["values"][genotype[0]["ind"]]
log_map_r = genotype[1]["values"][genotype[1]["ind"]]
log_map_on = genotype[2]["values"][genotype[2]["ind"]]
lfsr_seed = genotype[3]["values"][genotype[3]["ind"]]
lfsr_on = genotype[4]["values"][genotype[4]["ind"]]
rossler_c = genotype[5]["values"][genotype[5]["ind"]]
rossler_on = genotype[6]["values"][genotype[6]["ind"]]
tent_map_seed = genotype[7]["values"][genotype[7]["ind"]]
tent_map_r = genotype[8]["values"][genotype[8]["ind"]]
tent_on = genotype[9]["values"][genotype[9]["ind"]]
henon_map_x_seed = genotype[10]["values"][genotype[10]["ind"]]
henon_map_y_seed = genotype[11]["values"][genotype[11]["ind"]]
henon_map_a = genotype[12]["values"][genotype[12]["ind"]]
henon_on = genotype[13]["values"][genotype[13]["ind"]]
PARAMETERS = [log_map_seed, log_map_r, log_map_on,
lfsr_seed, lfsr_on,
rossler_c, rossler_on,
tent_map_seed, tent_map_r, tent_on,
henon_map_x_seed, henon_map_y_seed, henon_map_a, henon_on]
P = convert_to_binary(img)
keys = [convert_to_binary(seq.astype("uint8"))]
# generating pseudorandom numbers - Logistic map
if log_map_on == 1:
K1 = logistic_map(height, width, log_map_seed, log_map_r)
keys.append(K1)
# generating pseudorandom numbers - Linear feedback shift register
if lfsr_on == 1:
K2 = linear_shift_register(lfsr_seed, height, width)
keys.append(K2)
# # generating pseudorandom numbers - Rossler map
# # params for Rossler map
if rossler_on == 1:
rossler_a = 0.1
rossler_b = 0.1
rossler_seed = [1, 1, 0]
K3, y, z = rosslerMap(height, width, rossler_a, rossler_b, rossler_c, rossler_seed)
# XOR
# 1. K4 = rossler params - x and y
# 2. K5 = rossler params - K4 and z
# K_XY = np.array([np.binary_repr(int(i, 2) ^ int(j, 2), width=8) for i, j in zip(x.flatten(), y.flatten())])
# K3 = np.array([np.binary_repr(int(i, 2) ^ int(j, 2), width=8) for i, j in zip(K_XY.flatten(), z.flatten())])
keys.append(K3)
# Tent map
if tent_on == 1:
K4 = tentMap(height, width, tent_map_seed, tent_map_r)
keys.append(K4)
# Henon map
b = 0.3
if henon_on == 1:
K5 = henonMap(height, width, henon_map_x_seed, henon_map_y_seed, henon_map_a, b)
keys.append(K5)
K = np.array([np.binary_repr(i, width=8) for i in np.zeros((height * width), dtype=int)])
for k in keys:
K = np.array([np.binary_repr(int(i, 2) ^ int(j, 2), width=8) for i, j in zip(K.flatten(), k.flatten())])
# generating the encrypted image
P_PRIME = np.array([np.binary_repr(int(i, 2) ^ int(j, 2), width=8) for i, j in zip(K, P.flatten())])
chaos_encrypted_image = np.array([int(i, 2) for i in P_PRIME]).reshape((height, width)).astype('uint8')
print(f"Original image entropy : {shannon_entropy(img)}")
print(f"Entropy after encryption : {shannon_entropy(chaos_encrypted_image)}")
print(f"NPCR : {calc_NPCR(chaos_encrypted_image, img)}")
return calc_UACI(chaos_encrypted_image, img), chaos_encrypted_image, PARAMETERS
"""
Params which can be changed
1. Logistic map
1. Seed pixel value - (0.01, 1)
2. R - (3.6, 4)
2. Linear feedback shift register
1. Seed pixel
3. Rossler map
1. a = 0.2
2. b = 0.2
3. c
4. x0 - seed value
4. Tent map
1. tent map seed pixel
2. R
5. Henon map
1. henon map x seed
2. henon map y seed
3. a
4. b = 0.2
Fitness parameters
1. NPCR - nearly equal to 99.60
2. UACI - 33.4635
"""
def mutate_gene(thing):
ind = thing["ind"] + np.random.choice([-1, 1])
if ind < 0:
ind = thing["size"] - 1
if ind == thing["size"]:
ind = 0
thing["ind"] = ind
def make_gene(values):
return {"values": values, "size": len(values), "ind": np.random.randint(low=0, high=len(values))}
def mutate_genotype(genotype):
ind = np.random.choice(len(genotype))
mutate_gene(genotype[ind])
def evaluate_genotype(orig_img, enc_img):
return calc_UACI(enc_img, orig_img)
def create_discrete_genes(start, end):
return random.sample(range(start, end), 100)
def create_continous_genes(start, end):
return np.random.uniform(start, end, size=100)
def print_genotype_vals(genotype):
s = ''
for i, gene in enumerate(genotype):
vals = gene["values"]
if isinstance(vals[gene["ind"]], float):
s += str(f"{round(vals[gene['ind']], 5)}")
else:
s += str(f"{vals[gene['ind']]}")
if i != len(genotype):
s += ", "
return s
log_map_seed = create_continous_genes(0.01, 1)
log_map_r = create_continous_genes(3.6, 4)
log_map_on = [0, 1]
lfsr_seed = [np.binary_repr(i, width=8) for i in create_discrete_genes(0, 255)]
lfsr_on = [0, 1]
# rossler_c = create_continous_genes(5, 30)
rossler_c = [9, 10, 13, 18]
rossler_on = [0, 1]
tent_map_seed = create_continous_genes(0.01, 1)
tent_map_r = create_continous_genes(1, 2)
tent_on = [0, 1]
henon_map_x_seed = create_continous_genes(0.1, 1)
henon_map_y_seed = create_continous_genes(0.1, 1)
henon_map_a = create_continous_genes(1, 1.4)
henon_on = [0, 1]
log_map_seed_gene = make_gene(log_map_seed)
log_map_r_gene = make_gene(log_map_r)
log_map_on_gene = make_gene(log_map_on)
lfsr_seed_gene = make_gene(lfsr_seed)
lfsr_on_gene = make_gene(lfsr_on)
rossler_c_gene = make_gene(rossler_c)
rossler_on_gene = make_gene(rossler_on)
tent_map_seed_gene = make_gene(tent_map_seed)
tent_map_r_gene = make_gene(tent_map_r)
tent_on_gene = make_gene(tent_on)
henon_map_x_seed_gene = make_gene(henon_map_x_seed)
henon_map_y_seed_gene = make_gene(henon_map_y_seed)
henon_map_a_gene = make_gene(henon_map_a)
henon_on_gene = make_gene(henon_on)
genotype1 = [log_map_seed_gene, log_map_r_gene, log_map_on_gene,
lfsr_seed_gene, lfsr_on_gene,
rossler_c_gene, rossler_on_gene,
tent_map_seed_gene, tent_map_r_gene, tent_on_gene,
henon_map_x_seed_gene, henon_map_y_seed_gene, henon_map_a_gene, henon_on_gene]
os.chdir("/Users/rt/PycharmProjects/PixAdapt/")
video = cv2.VideoCapture("FINAL DATABASE/videos/sample.mp4")
sec = 0
frameRate = 4
count = 1
success = getFrame(sec)
frames = []
while success:
count += 1
sec += frameRate
sec = round(sec, 2)
success, image = getFrame(sec)
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.resize(image, (500, 500))
frames.append(image)
frames = np.array(frames)
seq = np.zeros(frames[0].shape)
for img_num, img in enumerate(frames):
data = run_sim(img, genotype1, seq)