-
Notifications
You must be signed in to change notification settings - Fork 6
/
example_tf.py
44 lines (29 loc) · 1.31 KB
/
example_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow as tf
from optimizers_tf import Truncated
from optimizers_tf import TruncatedAdagrad
def run_model(opt='sgd',stepsize=0.1,max_iter=5):
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
sgd = tf.keras.optimizers.SGD(lr=stepsize, decay=0, momentum=0)
trunc = optimizers_tf.Truncated(lr=stepsize)
trunc_adagrad = optimizers_tf.TruncatedAdagrad(lr=stepsize)
model_optimizer = sgd
if opt=='trunc':
model_optimizer = trunc
elif opt=='trunc_adagrad':
model_optimizer = trunc_adagrad
model.compile(optimizer=model_optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=max_iter)
acc_model = model.evaluate(x_test, y_test,verbose=0)
run_model(opt='sgd',stepsize=50,max_iter=2)
run_model(opt='trunc',stepsize=50,max_iter=2)
run_model(opt='trunc_adagrad',stepsize=50,max_iter=2)