forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nets.py
525 lines (458 loc) · 22.2 KB
/
nets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Depth and Ego-Motion networks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
SIMPLE = 'simple'
RESNET = 'resnet'
ARCHITECTURES = [SIMPLE, RESNET]
SCALE_TRANSLATION = 0.001
SCALE_ROTATION = 0.01
# Disparity (inverse depth) values range from 0.01 to 10. Note that effectively,
# this is undone if depth normalization is used, which scales the values to
# have a mean of 1.
DISP_SCALING = 10
MIN_DISP = 0.01
WEIGHT_DECAY_KEY = 'WEIGHT_DECAY'
EGOMOTION_VEC_SIZE = 6
def egomotion_net(image_stack, disp_bottleneck_stack, joint_encoder, seq_length,
weight_reg):
"""Predict ego-motion vectors from a stack of frames or embeddings.
Args:
image_stack: Input tensor with shape [B, h, w, seq_length * 3] in order.
disp_bottleneck_stack: Input tensor with shape [B, h_hidden, w_hidden,
seq_length * c_hidden] in order.
joint_encoder: Determines if the same encoder is used for computing the
bottleneck layer of both the egomotion and the depth prediction
network. If enabled, disp_bottleneck_stack is used as input, and the
encoding steps are skipped. If disabled, a separate encoder is defined
on image_stack.
seq_length: The sequence length used.
weight_reg: The amount of weight regularization.
Returns:
Egomotion vectors with shape [B, seq_length - 1, 6].
"""
num_egomotion_vecs = seq_length - 1
with tf.variable_scope('pose_exp_net') as sc:
end_points_collection = sc.original_name_scope + '_end_points'
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
normalizer_fn=None,
weights_regularizer=slim.l2_regularizer(weight_reg),
normalizer_params=None,
activation_fn=tf.nn.relu,
outputs_collections=end_points_collection):
if not joint_encoder:
# Define separate encoder. If sharing, we can skip the encoding step,
# as the bottleneck layer will already be passed as input.
cnv1 = slim.conv2d(image_stack, 16, [7, 7], stride=2, scope='cnv1')
cnv2 = slim.conv2d(cnv1, 32, [5, 5], stride=2, scope='cnv2')
cnv3 = slim.conv2d(cnv2, 64, [3, 3], stride=2, scope='cnv3')
cnv4 = slim.conv2d(cnv3, 128, [3, 3], stride=2, scope='cnv4')
cnv5 = slim.conv2d(cnv4, 256, [3, 3], stride=2, scope='cnv5')
with tf.variable_scope('pose'):
inputs = disp_bottleneck_stack if joint_encoder else cnv5
cnv6 = slim.conv2d(inputs, 256, [3, 3], stride=2, scope='cnv6')
cnv7 = slim.conv2d(cnv6, 256, [3, 3], stride=2, scope='cnv7')
pred_channels = EGOMOTION_VEC_SIZE * num_egomotion_vecs
egomotion_pred = slim.conv2d(cnv7, pred_channels, [1, 1], scope='pred',
stride=1, normalizer_fn=None,
activation_fn=None)
egomotion_avg = tf.reduce_mean(egomotion_pred, [1, 2])
egomotion_res = tf.reshape(
egomotion_avg, [-1, num_egomotion_vecs, EGOMOTION_VEC_SIZE])
# Tinghui found that scaling by a small constant facilitates training.
egomotion_scaled = tf.concat([egomotion_res[:, 0:3] * SCALE_TRANSLATION,
egomotion_res[:, 3:6] * SCALE_ROTATION],
axis=1)
return egomotion_scaled
def objectmotion_net(image_stack, disp_bottleneck_stack, joint_encoder,
seq_length, weight_reg):
"""Predict object-motion vectors from a stack of frames or embeddings.
Args:
image_stack: Input tensor with shape [B, h, w, seq_length * 3] in order.
disp_bottleneck_stack: Input tensor with shape [B, h_hidden, w_hidden,
seq_length * c_hidden] in order.
joint_encoder: Determines if the same encoder is used for computing the
bottleneck layer of both the egomotion and the depth prediction
network. If enabled, disp_bottleneck_stack is used as input, and the
encoding steps are skipped. If disabled, a separate encoder is defined
on image_stack.
seq_length: The sequence length used.
weight_reg: The amount of weight regularization.
Returns:
Egomotion vectors with shape [B, seq_length - 1, 6].
"""
num_egomotion_vecs = seq_length - 1
with tf.variable_scope('pose_exp_net') as sc:
end_points_collection = sc.original_name_scope + '_end_points'
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
normalizer_fn=None,
weights_regularizer=slim.l2_regularizer(weight_reg),
normalizer_params=None,
activation_fn=tf.nn.relu,
outputs_collections=end_points_collection):
if not joint_encoder:
# Define separate encoder. If sharing, we can skip the encoding step,
# as the bottleneck layer will already be passed as input.
cnv1 = slim.conv2d(image_stack, 16, [7, 7], stride=2, scope='cnv1')
cnv2 = slim.conv2d(cnv1, 32, [5, 5], stride=2, scope='cnv2')
cnv3 = slim.conv2d(cnv2, 64, [3, 3], stride=2, scope='cnv3')
cnv4 = slim.conv2d(cnv3, 128, [3, 3], stride=2, scope='cnv4')
cnv5 = slim.conv2d(cnv4, 256, [3, 3], stride=2, scope='cnv5')
with tf.variable_scope('pose'):
inputs = disp_bottleneck_stack if joint_encoder else cnv5
cnv6 = slim.conv2d(inputs, 256, [3, 3], stride=2, scope='cnv6')
cnv7 = slim.conv2d(cnv6, 256, [3, 3], stride=2, scope='cnv7')
pred_channels = EGOMOTION_VEC_SIZE * num_egomotion_vecs
egomotion_pred = slim.conv2d(cnv7, pred_channels, [1, 1], scope='pred',
stride=1, normalizer_fn=None,
activation_fn=None)
egomotion_avg = tf.reduce_mean(egomotion_pred, [1, 2])
egomotion_res = tf.reshape(
egomotion_avg, [-1, num_egomotion_vecs, EGOMOTION_VEC_SIZE])
# Tinghui found that scaling by a small constant facilitates training.
egomotion_scaled = tf.concat([egomotion_res[:, 0:3] * SCALE_TRANSLATION,
egomotion_res[:, 3:6] * SCALE_ROTATION],
axis=1)
return egomotion_scaled
def disp_net(architecture, image, use_skip, weight_reg, is_training):
"""Defines an encoder-decoder architecture for depth prediction."""
if architecture not in ARCHITECTURES:
raise ValueError('Unknown architecture.')
encoder_selected = encoder(architecture)
decoder_selected = decoder(architecture)
# Encode image.
bottleneck, skip_connections = encoder_selected(image, weight_reg,
is_training)
# Decode to depth.
multiscale_disps_i = decoder_selected(target_image=image,
bottleneck=bottleneck,
weight_reg=weight_reg,
use_skip=use_skip,
skip_connections=skip_connections)
return multiscale_disps_i, bottleneck
def encoder(architecture):
return encoder_resnet if architecture == RESNET else encoder_simple
def decoder(architecture):
return decoder_resnet if architecture == RESNET else decoder_simple
def encoder_simple(target_image, weight_reg, is_training):
"""Defines the old encoding architecture."""
del is_training
with slim.arg_scope([slim.conv2d],
normalizer_fn=None,
normalizer_params=None,
weights_regularizer=slim.l2_regularizer(weight_reg),
activation_fn=tf.nn.relu):
# Define (joint) encoder.
cnv1 = slim.conv2d(target_image, 32, [7, 7], stride=2, scope='cnv1')
cnv1b = slim.conv2d(cnv1, 32, [7, 7], stride=1, scope='cnv1b')
cnv2 = slim.conv2d(cnv1b, 64, [5, 5], stride=2, scope='cnv2')
cnv2b = slim.conv2d(cnv2, 64, [5, 5], stride=1, scope='cnv2b')
cnv3 = slim.conv2d(cnv2b, 128, [3, 3], stride=2, scope='cnv3')
cnv3b = slim.conv2d(cnv3, 128, [3, 3], stride=1, scope='cnv3b')
cnv4 = slim.conv2d(cnv3b, 256, [3, 3], stride=2, scope='cnv4')
cnv4b = slim.conv2d(cnv4, 256, [3, 3], stride=1, scope='cnv4b')
cnv5 = slim.conv2d(cnv4b, 512, [3, 3], stride=2, scope='cnv5')
cnv5b = slim.conv2d(cnv5, 512, [3, 3], stride=1, scope='cnv5b')
cnv6 = slim.conv2d(cnv5b, 512, [3, 3], stride=2, scope='cnv6')
cnv6b = slim.conv2d(cnv6, 512, [3, 3], stride=1, scope='cnv6b')
cnv7 = slim.conv2d(cnv6b, 512, [3, 3], stride=2, scope='cnv7')
cnv7b = slim.conv2d(cnv7, 512, [3, 3], stride=1, scope='cnv7b')
return cnv7b, (cnv6b, cnv5b, cnv4b, cnv3b, cnv2b, cnv1b)
def decoder_simple(target_image, bottleneck, weight_reg, use_skip,
skip_connections):
"""Defines the old depth decoder architecture."""
h = target_image.get_shape()[1].value
w = target_image.get_shape()[2].value
(cnv6b, cnv5b, cnv4b, cnv3b, cnv2b, cnv1b) = skip_connections
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
normalizer_fn=None,
normalizer_params=None,
weights_regularizer=slim.l2_regularizer(weight_reg),
activation_fn=tf.nn.relu):
up7 = slim.conv2d_transpose(bottleneck, 512, [3, 3], stride=2,
scope='upcnv7')
up7 = _resize_like(up7, cnv6b)
if use_skip:
i7_in = tf.concat([up7, cnv6b], axis=3)
else:
i7_in = up7
icnv7 = slim.conv2d(i7_in, 512, [3, 3], stride=1, scope='icnv7')
up6 = slim.conv2d_transpose(icnv7, 512, [3, 3], stride=2, scope='upcnv6')
up6 = _resize_like(up6, cnv5b)
if use_skip:
i6_in = tf.concat([up6, cnv5b], axis=3)
else:
i6_in = up6
icnv6 = slim.conv2d(i6_in, 512, [3, 3], stride=1, scope='icnv6')
up5 = slim.conv2d_transpose(icnv6, 256, [3, 3], stride=2, scope='upcnv5')
up5 = _resize_like(up5, cnv4b)
if use_skip:
i5_in = tf.concat([up5, cnv4b], axis=3)
else:
i5_in = up5
icnv5 = slim.conv2d(i5_in, 256, [3, 3], stride=1, scope='icnv5')
up4 = slim.conv2d_transpose(icnv5, 128, [3, 3], stride=2, scope='upcnv4')
up4 = _resize_like(up4, cnv3b)
if use_skip:
i4_in = tf.concat([up4, cnv3b], axis=3)
else:
i4_in = up4
icnv4 = slim.conv2d(i4_in, 128, [3, 3], stride=1, scope='icnv4')
disp4 = (slim.conv2d(icnv4, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp4')
* DISP_SCALING + MIN_DISP)
disp4_up = tf.image.resize_bilinear(disp4, [np.int(h / 4), np.int(w / 4)],
align_corners=True)
up3 = slim.conv2d_transpose(icnv4, 64, [3, 3], stride=2, scope='upcnv3')
up3 = _resize_like(up3, cnv2b)
if use_skip:
i3_in = tf.concat([up3, cnv2b, disp4_up], axis=3)
else:
i3_in = tf.concat([up3, disp4_up])
icnv3 = slim.conv2d(i3_in, 64, [3, 3], stride=1, scope='icnv3')
disp3 = (slim.conv2d(icnv3, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp3')
* DISP_SCALING + MIN_DISP)
disp3_up = tf.image.resize_bilinear(disp3, [np.int(h / 2), np.int(w / 2)],
align_corners=True)
up2 = slim.conv2d_transpose(icnv3, 32, [3, 3], stride=2, scope='upcnv2')
up2 = _resize_like(up2, cnv1b)
if use_skip:
i2_in = tf.concat([up2, cnv1b, disp3_up], axis=3)
else:
i2_in = tf.concat([up2, disp3_up])
icnv2 = slim.conv2d(i2_in, 32, [3, 3], stride=1, scope='icnv2')
disp2 = (slim.conv2d(icnv2, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp2')
* DISP_SCALING + MIN_DISP)
disp2_up = tf.image.resize_bilinear(disp2, [h, w], align_corners=True)
up1 = slim.conv2d_transpose(icnv2, 16, [3, 3], stride=2, scope='upcnv1')
i1_in = tf.concat([up1, disp2_up], axis=3)
icnv1 = slim.conv2d(i1_in, 16, [3, 3], stride=1, scope='icnv1')
disp1 = (slim.conv2d(icnv1, 1, [3, 3], stride=1, activation_fn=tf.sigmoid,
normalizer_fn=None, scope='disp1')
* DISP_SCALING + MIN_DISP)
return [disp1, disp2, disp3, disp4]
def encoder_resnet(target_image, weight_reg, is_training):
"""Defines a ResNet18-based encoding architecture.
This implementation follows Juyong Kim's implementation of ResNet18 on GitHub:
https://github.com/dalgu90/resnet-18-tensorflow
Args:
target_image: Input tensor with shape [B, h, w, 3] to encode.
weight_reg: Parameter ignored.
is_training: Whether the model is being trained or not.
Returns:
Tuple of tensors, with the first being the bottleneck layer as tensor of
size [B, h_hid, w_hid, c_hid], and others being intermediate layers
for building skip-connections.
"""
del weight_reg
encoder_filters = [64, 64, 128, 256, 512]
stride = 2
# conv1
with tf.variable_scope('conv1'):
x = _conv(target_image, 7, encoder_filters[0], stride)
x = _bn(x, is_train=is_training)
econv1 = _relu(x)
x = tf.nn.max_pool(econv1, [1, 3, 3, 1], [1, 2, 2, 1], 'SAME')
# conv2_x
x = _residual_block(x, is_training, name='conv2_1')
econv2 = _residual_block(x, is_training, name='conv2_2')
# conv3_x
x = _residual_block_first(econv2, is_training, encoder_filters[2], stride,
name='conv3_1')
econv3 = _residual_block(x, is_training, name='conv3_2')
# conv4_x
x = _residual_block_first(econv3, is_training, encoder_filters[3], stride,
name='conv4_1')
econv4 = _residual_block(x, is_training, name='conv4_2')
# conv5_x
x = _residual_block_first(econv4, is_training, encoder_filters[4], stride,
name='conv5_1')
econv5 = _residual_block(x, is_training, name='conv5_2')
return econv5, (econv4, econv3, econv2, econv1)
def decoder_resnet(target_image, bottleneck, weight_reg, use_skip,
skip_connections):
"""Defines the depth decoder architecture.
Args:
target_image: The original encoder input tensor with shape [B, h, w, 3].
Just the shape information is used here.
bottleneck: Bottleneck layer to be decoded.
weight_reg: The amount of weight regularization.
use_skip: Whether the passed skip connections econv1, econv2, econv3 and
econv4 should be used.
skip_connections: Tensors for building skip-connections.
Returns:
Disparities at 4 different scales.
"""
(econv4, econv3, econv2, econv1) = skip_connections
decoder_filters = [16, 32, 64, 128, 256]
default_pad = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0]])
reg = slim.l2_regularizer(weight_reg) if weight_reg > 0.0 else None
with slim.arg_scope([slim.conv2d, slim.conv2d_transpose],
normalizer_fn=None,
normalizer_params=None,
activation_fn=tf.nn.relu,
weights_regularizer=reg):
upconv5 = slim.conv2d_transpose(bottleneck, decoder_filters[4], [3, 3],
stride=2, scope='upconv5')
upconv5 = _resize_like(upconv5, econv4)
if use_skip:
i5_in = tf.concat([upconv5, econv4], axis=3)
else:
i5_in = upconv5
i5_in = tf.pad(i5_in, default_pad, mode='REFLECT')
iconv5 = slim.conv2d(i5_in, decoder_filters[4], [3, 3], stride=1,
scope='iconv5', padding='VALID')
upconv4 = slim.conv2d_transpose(iconv5, decoder_filters[3], [3, 3],
stride=2, scope='upconv4')
upconv4 = _resize_like(upconv4, econv3)
if use_skip:
i4_in = tf.concat([upconv4, econv3], axis=3)
else:
i4_in = upconv4
i4_in = tf.pad(i4_in, default_pad, mode='REFLECT')
iconv4 = slim.conv2d(i4_in, decoder_filters[3], [3, 3], stride=1,
scope='iconv4', padding='VALID')
disp4_input = tf.pad(iconv4, default_pad, mode='REFLECT')
disp4 = (slim.conv2d(disp4_input, 1, [3, 3], stride=1,
activation_fn=tf.sigmoid, normalizer_fn=None,
scope='disp4', padding='VALID')
* DISP_SCALING + MIN_DISP)
upconv3 = slim.conv2d_transpose(iconv4, decoder_filters[2], [3, 3],
stride=2, scope='upconv3')
upconv3 = _resize_like(upconv3, econv2)
if use_skip:
i3_in = tf.concat([upconv3, econv2], axis=3)
else:
i3_in = upconv3
i3_in = tf.pad(i3_in, default_pad, mode='REFLECT')
iconv3 = slim.conv2d(i3_in, decoder_filters[2], [3, 3], stride=1,
scope='iconv3', padding='VALID')
disp3_input = tf.pad(iconv3, default_pad, mode='REFLECT')
disp3 = (slim.conv2d(disp3_input, 1, [3, 3], stride=1,
activation_fn=tf.sigmoid, normalizer_fn=None,
scope='disp3', padding='VALID')
* DISP_SCALING + MIN_DISP)
upconv2 = slim.conv2d_transpose(iconv3, decoder_filters[1], [3, 3],
stride=2, scope='upconv2')
upconv2 = _resize_like(upconv2, econv1)
if use_skip:
i2_in = tf.concat([upconv2, econv1], axis=3)
else:
i2_in = upconv2
i2_in = tf.pad(i2_in, default_pad, mode='REFLECT')
iconv2 = slim.conv2d(i2_in, decoder_filters[1], [3, 3], stride=1,
scope='iconv2', padding='VALID')
disp2_input = tf.pad(iconv2, default_pad, mode='REFLECT')
disp2 = (slim.conv2d(disp2_input, 1, [3, 3], stride=1,
activation_fn=tf.sigmoid, normalizer_fn=None,
scope='disp2', padding='VALID')
* DISP_SCALING + MIN_DISP)
upconv1 = slim.conv2d_transpose(iconv2, decoder_filters[0], [3, 3],
stride=2, scope='upconv1')
upconv1 = _resize_like(upconv1, target_image)
upconv1 = tf.pad(upconv1, default_pad, mode='REFLECT')
iconv1 = slim.conv2d(upconv1, decoder_filters[0], [3, 3], stride=1,
scope='iconv1', padding='VALID')
disp1_input = tf.pad(iconv1, default_pad, mode='REFLECT')
disp1 = (slim.conv2d(disp1_input, 1, [3, 3], stride=1,
activation_fn=tf.sigmoid, normalizer_fn=None,
scope='disp1', padding='VALID')
* DISP_SCALING + MIN_DISP)
return [disp1, disp2, disp3, disp4]
def _residual_block_first(x, is_training, out_channel, strides, name='unit'):
"""Helper function for defining ResNet architecture."""
in_channel = x.get_shape().as_list()[-1]
with tf.variable_scope(name):
# Shortcut connection
if in_channel == out_channel:
if strides == 1:
shortcut = tf.identity(x)
else:
shortcut = tf.nn.max_pool(x, [1, strides, strides, 1],
[1, strides, strides, 1], 'VALID')
else:
shortcut = _conv(x, 1, out_channel, strides, name='shortcut')
# Residual
x = _conv(x, 3, out_channel, strides, name='conv_1')
x = _bn(x, is_train=is_training, name='bn_1')
x = _relu(x, name='relu_1')
x = _conv(x, 3, out_channel, 1, name='conv_2')
x = _bn(x, is_train=is_training, name='bn_2')
# Merge
x = x + shortcut
x = _relu(x, name='relu_2')
return x
def _residual_block(x, is_training, input_q=None, output_q=None, name='unit'):
"""Helper function for defining ResNet architecture."""
num_channel = x.get_shape().as_list()[-1]
with tf.variable_scope(name):
shortcut = x # Shortcut connection
# Residual
x = _conv(x, 3, num_channel, 1, input_q=input_q, output_q=output_q,
name='conv_1')
x = _bn(x, is_train=is_training, name='bn_1')
x = _relu(x, name='relu_1')
x = _conv(x, 3, num_channel, 1, input_q=output_q, output_q=output_q,
name='conv_2')
x = _bn(x, is_train=is_training, name='bn_2')
# Merge
x = x + shortcut
x = _relu(x, name='relu_2')
return x
def _conv(x, filter_size, out_channel, stride, pad='SAME', input_q=None,
output_q=None, name='conv'):
"""Helper function for defining ResNet architecture."""
if (input_q is None) ^ (output_q is None):
raise ValueError('Input/Output splits are not correctly given.')
in_shape = x.get_shape()
with tf.variable_scope(name):
# Main operation: conv2d
with tf.device('/CPU:0'):
kernel = tf.get_variable(
'kernel', [filter_size, filter_size, in_shape[3], out_channel],
tf.float32, initializer=tf.random_normal_initializer(
stddev=np.sqrt(2.0/filter_size/filter_size/out_channel)))
if kernel not in tf.get_collection(WEIGHT_DECAY_KEY):
tf.add_to_collection(WEIGHT_DECAY_KEY, kernel)
conv = tf.nn.conv2d(x, kernel, [1, stride, stride, 1], pad)
return conv
def _bn(x, is_train, name='bn'):
"""Helper function for defining ResNet architecture."""
bn = tf.layers.batch_normalization(x, training=is_train, name=name)
return bn
def _relu(x, name=None, leakness=0.0):
"""Helper function for defining ResNet architecture."""
if leakness > 0.0:
name = 'lrelu' if name is None else name
return tf.maximum(x, x*leakness, name='lrelu')
else:
name = 'relu' if name is None else name
return tf.nn.relu(x, name='relu')
def _resize_like(inputs, ref):
i_h, i_w = inputs.get_shape()[1], inputs.get_shape()[2]
r_h, r_w = ref.get_shape()[1], ref.get_shape()[2]
if i_h == r_h and i_w == r_w:
return inputs
else:
# TODO(casser): Other interpolation methods could be explored here.
return tf.image.resize_bilinear(inputs, [r_h.value, r_w.value],
align_corners=True)