forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
learner.py
272 lines (227 loc) · 12.7 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import division
from __future__ import print_function
from builtins import zip
from builtins import range
from builtins import object
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import traceback, threading, time, warnings
import tensorflow as tf
import numpy as np
import util
from replay import ReplayBuffer
class Learner(object):
"""
Generic object which runs the main training loop of anything that trains using
a replay buffer. Handles updating, logging, saving/loading, batching, etc.
"""
def __init__(self, interactor_queue, lock, config, env_config, learner_config, **bonus_kwargs):
self.learner_name = self.learner_name()
self.interactor_queue = interactor_queue
self.learner_lock = lock
self.config = config
self.env_config = env_config
self.learner_config = learner_config
self.bonus_kwargs = bonus_kwargs
self.kill_threads = False
self.permit_desync = False
self.need_frames_notification = threading.Condition()
self._reset_inspections()
self.total_frames = 0
self.save_path = util.create_directory("%s/%s/%s/%s" % (self.config["output_root"], self.config["env"]["name"], self.config["name"], self.config["save_model_path"]))
self.log_path = util.create_directory("%s/%s/%s/%s" % (self.config["output_root"], self.config["env"]["name"], self.config["name"], self.config["log_path"])) + "/%s.log" % self.learner_name
# replay buffer to store data
self.replay_buffer_lock = threading.RLock()
self.replay_buffer = ReplayBuffer(self.learner_config["replay_size"],
np.prod(self.env_config["obs_dims"]),
self.env_config["action_dim"])
# data loaders pull data from the replay buffer and put it into the tfqueue for model usage
self.data_loaders = self.make_loader_placeholders()
queue_capacity = np.ceil(1./self.learner_config["frames_per_update"]) if self.learner_config["frames_per_update"] else 100
self.tf_queue = tf.FIFOQueue(capacity=queue_capacity, dtypes=[dl.dtype for dl in self.data_loaders])
self.enqueue_op = self.tf_queue.enqueue(self.data_loaders)
self.current_batch = self.tf_queue.dequeue()
# build the TF graph for the actual model to train
self.core, self.train_losses, self.train_ops, self.inspect_losses = self.make_core_model()
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
## Mandatory functions to override
def learner_name(self): raise Exception('unimplemented: learner_name')
def make_loader_placeholders(self): raise Exception('unimplemented: make_loader_placeholders')
def make_core_model(self): raise Exception('unimplemented: make_core_model')
## Optional functions to override
def initialize(self): warnings.warn('unimplemented: initialize')
def resume_from_checkpoint(self, epoch): warnings.warn('unimplemented: resume_from_checkpoint')
def checkpoint(self): warnings.warn('unimplemented: checkpoint')
def backup(self): warnings.warn('unimplemented: backup')
## Internal functions
def _start(self):
# fetch data from the interactors to pre-fill the replay buffer
self.prefetch_thread = threading.Thread(target=self._poll_interactors, args=(True, self.learner_config["frames_before_learning"],))
self.prefetch_thread.start()
self.prefetch_thread.join()
# start the interactor and data loader
self.data_load_thread = threading.Thread(target=self._run_enqueue_data)
self.data_load_thread.start()
# initialize the learner, pretraining if needed
if self.config["resume"]: self._resume_from_checkpoint()
else: self._initialize()
# re-sync everything, and start up interactions with the environment
self.interactor_poll_thread = threading.Thread(target=self._poll_interactors)
self.interactor_poll_thread.start()
# start the clock
self._last_checkpoint_time = time.time()
def _learn(self, permit_desync=False, log=True, checkpoint=True, backup=True):
# this is to keep the frames/update synced properly
if self.learner_config["frames_per_update"] is not False and not permit_desync:
if not self._have_enough_frames():
with self.need_frames_notification:
self.need_frames_notification.notify()
return
# log
if log and (self.update_i + 1) % self.learner_config["log_every_n"] == 0:
self._log()
# checkpoint
if checkpoint and (self.update_i + 1) % self.learner_config["epoch_every_n"] == 0:
self._checkpoint()
# backup
if backup and (self.update_i + 1) % self.learner_config["backup_every_n"] == 0:
self._backup()
# train
self._training_step()
def _have_enough_frames(self):
gathered_frames = self.total_frames - self.learner_config["frames_before_learning"]
return gathered_frames > self.learner_config["frames_per_update"] * self.update_i
def _initialize(self):
self.epoch = 0
self.update_i = 0
self.hours = 0
self._last_checkpoint_time = time.time()
self.initialize()
if self.learner_config["pretrain_n"]: self._pretrain()
self._checkpoint()
def _pretrain(self):
for _ in range(self.learner_config["pretrain_n"]):
self._learn(permit_desync=True, checkpoint=False, backup=False)
self.epoch = 0
self.update_i = 0
def _resume_from_checkpoint(self):
epoch = util.get_largest_epoch_in_dir(self.save_path, self.core.saveid)
if not self.config['keep_all_replay_buffers']: util.wipe_all_but_largest_epoch_in_dir(self.save_path, self.core.saveid)
if epoch is False:
raise Exception("Tried to reload but no model found")
with self.learner_lock:
self.core.load(self.sess, self.save_path, epoch)
self.epoch, self.update_i, self.total_frames, self.hours = self.sess.run([self.core.epoch_n, self.core.update_n, self.core.frame_n, self.core.hours])
with self.replay_buffer_lock:
self.replay_buffer.load(self.save_path, '%09d_%s' % (epoch, self.learner_name))
self.resume_from_checkpoint(epoch)
def _log(self):
if self.denom > 0:
logstring = "(%3.2f sec) h%-8.2f e%-8d s%-8d f%-8d\t" % (time.time() - self._log_time, self.hours, self.epoch, self.update_i + 1, self.total_frames) + ', '.join(["%8f" % x for x in (self.running_total / self.denom).tolist()])
print("%s\t%s" % (self.learner_name, logstring))
with open(self.log_path, "a") as f: f.write(logstring + "\n")
self._reset_inspections()
def _reset_inspections(self):
self.running_total = 0.
self.denom = 0.
self._log_time = time.time()
def _checkpoint(self):
self.checkpoint()
self.epoch += 1
self.hours += (time.time() - self._last_checkpoint_time) / 3600.
self._last_checkpoint_time = time.time()
self.core.update_epoch(self.sess, self.epoch, self.update_i, self.total_frames, self.hours)
with self.learner_lock: self.core.save(self.sess, self.save_path)
def _backup(self):
self.backup()
if not self.learner_config['keep_all_replay_buffers']: util.wipe_all_but_largest_epoch_in_dir(self.save_path, self.core.saveid)
with self.learner_lock:
self.core.save(self.sess, self.save_path, self.epoch)
with self.replay_buffer_lock:
self.replay_buffer.save(self.save_path, '%09d_%s' % (self.epoch, self.learner_name))
def _training_step(self):
train_ops = tuple([op for op, loss in zip(self.train_ops,
self.train_losses)
if loss is not None])
outs = self.sess.run(train_ops + self.inspect_losses)
self.running_total += np.array(outs[len(train_ops):])
self.denom += 1.
self.update_i += 1
def _poll_interactors(self, continuous_poll=False, frames_before_terminate=None):
# poll the interactors for new frames.
# the synced_condition semaphore prevents this from consuming too much CPU
while not self.kill_threads:
if self.learner_config["frames_per_update"] is not False and not continuous_poll:
with self.need_frames_notification: self.need_frames_notification.wait()
while not self.interactor_queue.empty():
new_frames = self.interactor_queue.get()
self._add_frames(new_frames)
if frames_before_terminate and self.total_frames >= frames_before_terminate: return
def _add_frames(self, frames):
with self.replay_buffer_lock:
for frame in frames:
self.replay_buffer.add_replay(*frame)
self.total_frames = self.replay_buffer.count
return self.total_frames
def _run_enqueue_data(self):
while not self.kill_threads:
data = self.replay_buffer.random_batch(self.learner_config["batch_size"])
self.sess.run(self.enqueue_op, feed_dict=dict(list(zip(self.data_loaders, data))))
def _kill_threads(self):
self.kill_threads = True
class CoreModel(object):
"""The base class for the "core" of learners."""
def __init__(self, name, env_config, learner_config):
self.name = self.saveid + "/" + name
self.env_config = env_config
self.learner_config = learner_config
with tf.variable_scope(self.name):
self.epoch_n = tf.get_variable('epoch_n', [], initializer=tf.constant_initializer(0), dtype=tf.int64, trainable=False)
self.update_n = tf.get_variable('update_n', [], initializer=tf.constant_initializer(0), dtype=tf.int64, trainable=False)
self.frame_n = tf.get_variable('frame_n', [], initializer=tf.constant_initializer(0), dtype=tf.int64, trainable=False)
self.hours = tf.get_variable('hours', [], initializer=tf.constant_initializer(0.), dtype=tf.float64, trainable=False)
self.epoch_n_placeholder = tf.placeholder(tf.int64, [])
self.update_n_placeholder = tf.placeholder(tf.int64, [])
self.frame_n_placeholder = tf.placeholder(tf.int64, [])
self.hours_placeholder = tf.placeholder(tf.float64, [])
self.assign_epoch_op = [tf.assign(self.epoch_n, self.epoch_n_placeholder), tf.assign(self.update_n, self.update_n_placeholder), tf.assign(self.frame_n, self.frame_n_placeholder), tf.assign(self.hours, self.hours_placeholder)]
self.create_params(env_config, learner_config)
self.model_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
self.saver = tf.train.Saver(self.model_params)
@property
def saveid(self):
raise Exception("specify a save ID")
def create_params(self, env_config, learner_config):
raise Exception("unimplemented")
def update_epoch(self, sess, epoch, updates, frames, hours):
sess.run(self.assign_epoch_op, feed_dict={self.epoch_n_placeholder: int(epoch), self.update_n_placeholder: int(updates), self.frame_n_placeholder: int(frames), self.hours_placeholder: float(hours)})
def save(self, sess, path, epoch=None):
if epoch is None: self.saver.save(sess, path + "/%s.params" % self.saveid)
else: self.saver.save(sess, path + "/%09d_%s.params" % (epoch, self.saveid))
def load(self, sess, path, epoch=None):
if epoch is None: self.saver.restore(sess, path + "/%s.params" % self.saveid)
else: self.saver.restore(sess, path + "/%09d_%s.params" % (epoch, self.saveid))
def run_learner(learner_subclass, queue, lock, config, env_config, learner_config, **bonus_kwargs):
learner = learner_subclass(queue, lock, config, env_config, learner_config, **bonus_kwargs)
try:
learner._start()
while True: learner._learn()
except Exception as e:
print('Caught exception in learner process')
traceback.print_exc()
learner._kill_threads()
print()
raise e