forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
input.py
325 lines (280 loc) · 12 KB
/
input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Input pipe for feeding examples to a Seq2Label model graph."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from google.protobuf import text_format
from protos import seq2label_pb2
import seq2label_utils
DNA_BASES = tuple('ACGT')
NUM_DNA_BASES = len(DNA_BASES)
# Possible FASTA characters/IUPAC ambiguity codes.
# See https://en.wikipedia.org/wiki/Nucleic_acid_notation.
AMBIGUITY_CODES = {
'K': 'GT',
'M': 'AC',
'R': 'AG',
'Y': 'CT',
'S': 'CG',
'W': 'AT',
'B': 'CGT',
'V': 'ACG',
'H': 'ACT',
'D': 'AGT',
'X': 'ACGT',
'N': 'ACGT'
}
def load_dataset_info(dataset_info_path):
"""Load a `Seq2LabelDatasetInfo` from a serialized text proto file."""
dataset_info = seq2label_pb2.Seq2LabelDatasetInfo()
with tf.gfile.Open(dataset_info_path, 'r') as f:
text_format.Parse(f.read(), dataset_info)
return dataset_info
class _InputEncoding(object):
"""A helper class providing the graph operations needed to encode input.
Instantiation of an _InputEncoding will write on the default TF graph, so it
should only be instantiated inside the `input_fn`.
Attributes:
mode: `tf.estimator.ModeKeys`; the execution mode {TRAIN, EVAL, INFER}.
targets: list of strings; the names of the labels of interest (e.g.
"species").
dna_bases: a tuple of the recognized DNA alphabet.
n_bases: the size of the DNA alphabet.
all_characters: list of recognized alphabet, including ambiguity codes.
label_values: a tuple of strings, the possible label values of the
prediction target.
n_labels: the size of label_values
fixed_read_length: an integer value of the statically-known read length, or
None if the read length is to be determined dynamically.
"""
def __init__(self,
dataset_info,
mode,
targets,
noise_rate=0.0,
fixed_read_length=None):
self.mode = mode
self.targets = targets
self.dna_bases = DNA_BASES
self.n_bases = NUM_DNA_BASES
self.all_characters = list(DNA_BASES) + sorted(AMBIGUITY_CODES.keys())
self.character_encodings = np.concatenate(
[[self._character_to_base_distribution(char)]
for char in self.all_characters],
axis=0)
all_legal_label_values = seq2label_utils.get_all_label_values(dataset_info)
# TF lookup tables.
self.characters_table = tf.contrib.lookup.index_table_from_tensor(
mapping=self.all_characters)
self.label_tables = {
target: tf.contrib.lookup.index_table_from_tensor(
all_legal_label_values[target])
for target in targets
}
self.fixed_read_length = fixed_read_length
self.noise_rate = noise_rate
def _character_to_base_distribution(self, char):
"""Maps the given character to a probability distribution over DNA bases.
Args:
char: character to be encoded as a probability distribution over bases.
Returns:
Array of size (self.n_bases,) representing the identity of the given
character as a distribution over the possible DNA bases, self.dna_bases.
Raises:
ValueError: if the given character is not contained in the recognized
alphabet, self.all_characters.
"""
if char not in self.all_characters:
raise ValueError(
'Base distribution requested for unrecognized character %s.' % char)
possible_bases = AMBIGUITY_CODES[char] if char in AMBIGUITY_CODES else char
base_indices = [self.dna_bases.index(base) for base in possible_bases]
probability_weight = 1.0 / len(possible_bases)
distribution = np.zeros((self.n_bases))
distribution[base_indices] = probability_weight
return distribution
def encode_read(self, string_seq):
"""Converts the input read sequence to one-hot encoding.
Args:
string_seq: tf.String; input read sequence.
Returns:
Input read sequence as a one-hot encoded Tensor, with depth and ordering
of one-hot encoding determined by the given bases. Ambiguous characters
such as "N" and "S" are encoded as a probability distribution over the
possible bases they represent.
"""
with tf.variable_scope('encode_read'):
read = tf.string_split([string_seq], delimiter='').values
read = self.characters_table.lookup(read)
read = tf.cast(tf.gather(self.character_encodings, read), tf.float32)
if self.fixed_read_length:
read = tf.reshape(read, (self.fixed_read_length, self.n_bases))
return read
def encode_label(self, target, string_label):
"""Converts the label value to an integer encoding.
Args:
target: str; the target name.
string_label: tf.String; value of the label for the current input read.
Returns:
Given label value as an index into the possible_target_values.
"""
with tf.variable_scope('encode_label/{}'.format(target)):
return tf.cast(self.label_tables[target].lookup(string_label), tf.int32)
def _empty_label(self):
return tf.constant((), dtype=tf.int32, shape=())
def parse_single_tfexample(self, serialized_example):
"""Parses a tf.train.Example proto to a one-hot encoded read, label pair.
Injects noise into the incoming tf.train.Example's read sequence
when noise_rate is non-zero.
Args:
serialized_example: string; the serialized tf.train.Example proto
containing the read sequence and label value of interest as
tf.FixedLenFeatures.
Returns:
Tuple (features, labels) of dicts for the input features and prediction
targets.
"""
with tf.variable_scope('parse_single_tfexample'):
features_spec = {'sequence': tf.FixedLenFeature([], tf.string)}
for target in self.targets:
features_spec[target] = tf.FixedLenFeature([], tf.string)
features = tf.parse_single_example(
serialized_example, features=features_spec)
if self.noise_rate > 0.0:
read_sequence = tf.py_func(seq2label_utils.add_read_noise,
[features['sequence'], self.noise_rate],
(tf.string))
else:
read_sequence = features['sequence']
read_sequence = self.encode_read(read_sequence)
read_features = {'sequence': read_sequence}
if self.mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
label = {
target: self.encode_label(target, features[target])
for target in self.targets
}
else:
label = {target: self._empty_label() for target in self.targets}
return read_features, label
class InputDataset(object):
"""A class providing access to input data for the Seq2Label model.
Attributes:
mode: `tf.estimator.ModeKeys`; the execution mode {TRAIN, EVAL, INFER}.
targets: list of strings; the names of the labels of interest (e.g.
"species").
dataset_info: a `Seq2LabelDatasetInfo` message reflecting the dataset
metadata.
initializer: the TF initializer op for the underlying iterator, which
will rewind the iterator.
is_train: Boolean indicating whether or not the execution mode is TRAIN.
"""
def __init__(self,
mode,
targets,
dataset_info,
train_epochs=None,
noise_rate=0.0,
random_seed=None,
input_tfrecord_files=None,
fixed_read_length=None,
ensure_constant_batch_size=False,
num_parallel_calls=32):
"""Constructor for InputDataset.
Args:
mode: `tf.estimator.ModeKeys`; the execution mode {TRAIN, EVAL, INFER}.
targets: list of strings; the names of the labels of interest (e.g.
"species").
dataset_info: a `Seq2LabelDatasetInfo` message reflecting the dataset
metadata.
train_epochs: the number of training epochs to perform, if mode==TRAIN.
noise_rate: float [0.0, 1.0] specifying rate at which to inject
base-flipping noise into the read sequences.
random_seed: seed to be used for shuffling, if mode==TRAIN.
input_tfrecord_files: a list of filenames for TFRecords of TF examples.
fixed_read_length: an integer value of the statically-known read length,
or None if the read length is to be determined dynamically. The read
length must be known statically for TPU execution.
ensure_constant_batch_size: ensure a constant batch size at the expense of
discarding the last "short" batch. This also gives us a statically
constant batch size, which is essential for e.g. the TPU platform.
num_parallel_calls: the number of dataset elements to process in parallel.
If None, elements will be processed sequentially.
"""
self.input_tfrecord_files = input_tfrecord_files
self.mode = mode
self.targets = targets
self.dataset_info = dataset_info
self._train_epochs = train_epochs
self._noise_rate = noise_rate
self._random_seed = random_seed
if random_seed is not None:
np.random.seed(random_seed)
self._fixed_read_length = fixed_read_length
self._ensure_constant_batch_size = ensure_constant_batch_size
self._num_parallel_calls = num_parallel_calls
@staticmethod
def from_tfrecord_files(input_tfrecord_files, *args, **kwargs):
return InputDataset(
*args, input_tfrecord_files=input_tfrecord_files, **kwargs)
@property
def is_train(self):
return self.mode == tf.estimator.ModeKeys.TRAIN
def input_fn(self, params):
"""Supplies input for the model.
This function supplies input to our model as a function of the mode.
Args:
params: a dictionary, containing:
- params['batch_size']: the integer batch size.
Returns:
A tuple of two values as follows:
1) the *features* dict, containing a tensor value for keys as follows:
- "sequence" - the encoded read input sequence.
2) the *labels* dict. containing a key for `target`, whose value is:
- a string Tensor value (in TRAIN/EVAL mode), or
- a blank Tensor (PREDICT mode).
"""
randomize_input = self.is_train
batch_size = params['batch_size']
encoding = _InputEncoding(
self.dataset_info,
self.mode,
self.targets,
noise_rate=self._noise_rate,
fixed_read_length=self._fixed_read_length)
dataset = tf.data.TFRecordDataset(self.input_tfrecord_files)
dataset = dataset.map(
encoding.parse_single_tfexample,
num_parallel_calls=self._num_parallel_calls)
dataset = dataset.repeat(self._train_epochs if self.is_train else 1)
if randomize_input:
dataset = dataset.shuffle(
buffer_size=max(1000, batch_size), seed=self._random_seed)
if self._ensure_constant_batch_size:
# Only take batches of *exactly* size batch_size; then we get a
# statically knowable batch shape.
dataset = dataset.batch(batch_size, drop_remainder=True)
else:
dataset = dataset.batch(batch_size)
# Prefetch to allow infeed to be in parallel with model computations.
dataset = dataset.prefetch(2)
# Use initializable iterator to support table lookups.
iterator = dataset.make_initializable_iterator()
self.initializer = iterator.initializer
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
features, labels = iterator.get_next()
return (features, labels)