forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lexnet_model.py
438 lines (347 loc) · 15.1 KB
/
lexnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# Copyright 2017, 2018 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The integrated LexNET model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import lexnet_common
import numpy as np
import tensorflow as tf
from six.moves import xrange
class LexNETModel(object):
"""The LexNET model for classifying relationships between noun compounds."""
@classmethod
def default_hparams(cls):
"""Returns the default hyper-parameters."""
return tf.contrib.training.HParams(
batch_size=10,
num_classes=37,
num_epochs=30,
input_keep_prob=0.9,
input='integrated', # dist/ dist-nc/ path/ integrated/ integrated-nc
learn_relata=False,
corpus='wiki_gigawords',
random_seed=133, # zero means no random seed
relata_embeddings_file='glove/glove.6B.300d.bin',
nc_embeddings_file='nc_glove/vecs.6B.300d.bin',
path_embeddings_file='path_embeddings/tratz/fine_grained/wiki',
hidden_layers=1,
path_dim=60)
def __init__(self, hparams, relata_embeddings, path_embeddings, nc_embeddings,
path_to_index):
"""Initialize the LexNET classifier.
Args:
hparams: the hyper-parameters.
relata_embeddings: word embeddings for the distributional component.
path_embeddings: embeddings for the paths.
nc_embeddings: noun compound embeddings.
path_to_index: a mapping from string path to an index in the path
embeddings matrix.
"""
self.hparams = hparams
self.path_embeddings = path_embeddings
self.relata_embeddings = relata_embeddings
self.nc_embeddings = nc_embeddings
self.vocab_size, self.relata_dim = 0, 0
self.path_to_index = None
self.path_dim = 0
# Set the random seed
if hparams.random_seed > 0:
tf.set_random_seed(hparams.random_seed)
# Get the vocabulary size and relata dim
if self.hparams.input in ['dist', 'dist-nc', 'integrated', 'integrated-nc']:
self.vocab_size, self.relata_dim = self.relata_embeddings.shape
# Create the mapping from string path to an index in the embeddings matrix
if self.hparams.input in ['path', 'integrated', 'integrated-nc']:
self.path_to_index = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(
tf.constant(path_to_index.keys()),
tf.constant(path_to_index.values()),
key_dtype=tf.string, value_dtype=tf.int32), 0)
self.path_dim = self.path_embeddings.shape[1]
# Create the network
self.__create_computation_graph__()
def __create_computation_graph__(self):
"""Initialize the model and define the graph."""
network_input = 0
# Define the network inputs
# Distributional x and y
if self.hparams.input in ['dist', 'dist-nc', 'integrated', 'integrated-nc']:
network_input += 2 * self.relata_dim
self.relata_lookup = tf.get_variable(
'relata_lookup',
initializer=self.relata_embeddings,
dtype=tf.float32,
trainable=self.hparams.learn_relata)
# Path-based
if self.hparams.input in ['path', 'integrated', 'integrated-nc']:
network_input += self.path_dim
self.path_initial_value_t = tf.placeholder(tf.float32, None)
self.path_lookup = tf.get_variable(
name='path_lookup',
dtype=tf.float32,
trainable=False,
shape=self.path_embeddings.shape)
self.initialize_path_op = tf.assign(
self.path_lookup, self.path_initial_value_t, validate_shape=False)
# Distributional noun compound
if self.hparams.input in ['dist-nc', 'integrated-nc']:
network_input += self.relata_dim
self.nc_initial_value_t = tf.placeholder(tf.float32, None)
self.nc_lookup = tf.get_variable(
name='nc_lookup',
dtype=tf.float32,
trainable=False,
shape=self.nc_embeddings.shape)
self.initialize_nc_op = tf.assign(
self.nc_lookup, self.nc_initial_value_t, validate_shape=False)
hidden_dim = network_input // 2
# Define the MLP
if self.hparams.hidden_layers == 0:
self.weights1 = tf.get_variable(
'W1',
shape=[network_input, self.hparams.num_classes],
dtype=tf.float32)
self.bias1 = tf.get_variable(
'b1',
shape=[self.hparams.num_classes],
dtype=tf.float32)
elif self.hparams.hidden_layers == 1:
self.weights1 = tf.get_variable(
'W1',
shape=[network_input, hidden_dim],
dtype=tf.float32)
self.bias1 = tf.get_variable(
'b1',
shape=[hidden_dim],
dtype=tf.float32)
self.weights2 = tf.get_variable(
'W2',
shape=[hidden_dim, self.hparams.num_classes],
dtype=tf.float32)
self.bias2 = tf.get_variable(
'b2',
shape=[self.hparams.num_classes],
dtype=tf.float32)
else:
raise ValueError('Only 0 or 1 hidden layers are supported')
# Define the variables
self.instances = tf.placeholder(dtype=tf.string,
shape=[self.hparams.batch_size])
(self.x_embedding_id,
self.y_embedding_id,
self.nc_embedding_id,
self.path_embedding_id,
self.path_counts,
self.labels) = parse_tensorflow_examples(
self.instances, self.hparams.batch_size, self.path_to_index)
# Create the MLP
self.__mlp__()
self.instances_to_load = tf.placeholder(dtype=tf.string, shape=[None])
self.labels_to_load = lexnet_common.load_all_labels(self.instances_to_load)
self.pairs_to_load = lexnet_common.load_all_pairs(self.instances_to_load)
def load_labels(self, session, instances):
"""Loads the labels for these instances.
Args:
session: The current TensorFlow session,
instances: The instances for which to load the labels.
Returns:
the labels of these instances.
"""
return session.run(self.labels_to_load,
feed_dict={self.instances_to_load: instances})
def load_pairs(self, session, instances):
"""Loads the word pairs for these instances.
Args:
session: The current TensorFlow session,
instances: The instances for which to load the labels.
Returns:
the word pairs of these instances.
"""
word_pairs = session.run(self.pairs_to_load,
feed_dict={self.instances_to_load: instances})
return [pair[0].split('::') for pair in word_pairs]
def __train_single_batch__(self, session, batch_instances):
"""Train a single batch.
Args:
session: The current TensorFlow session.
batch_instances: TensorFlow examples containing the training intances
Returns:
The cost for the current batch.
"""
cost, _ = session.run([self.cost, self.train_op],
feed_dict={self.instances: batch_instances})
return cost
def fit(self, session, inputs, on_epoch_completed, val_instances, val_labels,
save_path):
"""Train the model.
Args:
session: The current TensorFlow session.
inputs:
on_epoch_completed: A method to call after each epoch.
val_instances: The validation set instances (evaluation between epochs).
val_labels: The validation set labels (for evaluation between epochs).
save_path: Where to save the model.
"""
for epoch in range(self.hparams.num_epochs):
losses = []
epoch_indices = list(np.random.permutation(len(inputs)))
# If the number of instances doesn't divide by batch_size, enlarge it
# by duplicating training examples
mod = len(epoch_indices) % self.hparams.batch_size
if mod > 0:
epoch_indices.extend([np.random.randint(0, high=len(inputs))] * mod)
# Define the batches
n_batches = len(epoch_indices) // self.hparams.batch_size
for minibatch in range(n_batches):
batch_indices = epoch_indices[minibatch * self.hparams.batch_size:(
minibatch + 1) * self.hparams.batch_size]
batch_instances = [inputs[i] for i in batch_indices]
loss = self.__train_single_batch__(session, batch_instances)
losses.append(loss)
epoch_loss = np.nanmean(losses)
if on_epoch_completed:
should_stop = on_epoch_completed(self, session, epoch, epoch_loss,
val_instances, val_labels, save_path)
if should_stop:
print('Stopping training after %d epochs.' % epoch)
return
def predict(self, session, inputs):
"""Predict the classification of the test set.
Args:
session: The current TensorFlow session.
inputs: the train paths, x, y and/or nc vectors
Returns:
The test predictions.
"""
predictions, _ = zip(*self.predict_with_score(session, inputs))
return np.array(predictions)
def predict_with_score(self, session, inputs):
"""Predict the classification of the test set.
Args:
session: The current TensorFlow session.
inputs: the test paths, x, y and/or nc vectors
Returns:
The test predictions along with their scores.
"""
test_pred = [0] * len(inputs)
for chunk in xrange(0, len(test_pred), self.hparams.batch_size):
# Initialize the variables with the current batch data
batch_indices = list(
range(chunk, min(chunk + self.hparams.batch_size, len(test_pred))))
# If the batch is too small, add a few other examples
if len(batch_indices) < self.hparams.batch_size:
batch_indices += [0] * (self.hparams.batch_size-len(batch_indices))
batch_instances = [inputs[i] for i in batch_indices]
predictions, scores = session.run(
[self.predictions, self.scores],
feed_dict={self.instances: batch_instances})
for index_in_batch, index_in_dataset in enumerate(batch_indices):
prediction = predictions[index_in_batch]
score = scores[index_in_batch][prediction]
test_pred[index_in_dataset] = (prediction, score)
return test_pred
def __mlp__(self):
"""Performs the MLP operations.
Returns: the prediction object to be computed in a Session
"""
# Define the operations
# Network input
vec_inputs = []
# Distributional component
if self.hparams.input in ['dist', 'dist-nc', 'integrated', 'integrated-nc']:
for emb_id in [self.x_embedding_id, self.y_embedding_id]:
vec_inputs.append(tf.nn.embedding_lookup(self.relata_lookup, emb_id))
# Noun compound component
if self.hparams.input in ['dist-nc', 'integrated-nc']:
vec = tf.nn.embedding_lookup(self.nc_lookup, self.nc_embedding_id)
vec_inputs.append(vec)
# Path-based component
if self.hparams.input in ['path', 'integrated', 'integrated-nc']:
# Get the current paths for each batch instance
self.path_embeddings = tf.nn.embedding_lookup(self.path_lookup,
self.path_embedding_id)
# self.path_embeddings is of shape
# [batch_size, max_path_per_instance, output_dim]
# We need to multiply it by path counts
# ([batch_size, max_path_per_instance]).
# Start by duplicating path_counts along the output_dim axis.
self.path_freq = tf.tile(tf.expand_dims(self.path_counts, -1),
[1, 1, self.path_dim])
# Compute the averaged path vector for each instance.
# First, multiply the path embeddings and frequencies element-wise.
self.weighted = tf.multiply(self.path_freq, self.path_embeddings)
# Second, take the sum to get a tensor of shape [batch_size, output_dim].
self.pair_path_embeddings = tf.reduce_sum(self.weighted, 1)
# Finally, divide by the total number of paths.
# The number of paths for each pair has a shape [batch_size, 1],
# We duplicate it output_dim times along the second axis.
self.num_paths = tf.clip_by_value(
tf.reduce_sum(self.path_counts, 1), 1, np.inf)
self.num_paths = tf.tile(tf.expand_dims(self.num_paths, -1),
[1, self.path_dim])
# And finally, divide pair_path_embeddings by num_paths element-wise.
self.pair_path_embeddings = tf.div(
self.pair_path_embeddings, self.num_paths)
vec_inputs.append(self.pair_path_embeddings)
# Concatenate the inputs and feed to the MLP
self.input_vec = tf.nn.dropout(
tf.concat(vec_inputs, 1),
keep_prob=self.hparams.input_keep_prob)
h = tf.matmul(self.input_vec, self.weights1)
self.output = h
if self.hparams.hidden_layers == 1:
self.output = tf.matmul(tf.nn.tanh(h), self.weights2)
self.scores = self.output
self.predictions = tf.argmax(self.scores, axis=1)
# Define the loss function and the optimization algorithm
self.cross_entropies = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=self.scores, labels=self.labels)
self.cost = tf.reduce_sum(self.cross_entropies, name='cost')
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer()
self.train_op = self.optimizer.minimize(
self.cost, global_step=self.global_step)
def parse_tensorflow_examples(record, batch_size, path_to_index):
"""Reads TensorFlow examples from a RecordReader.
Args:
record: a record with TensorFlow examples.
batch_size: the number of instances in a minibatch
path_to_index: mapping from string path to index in the embeddings matrix.
Returns:
The word embeddings IDs, paths and counts
"""
features = tf.parse_example(
record, {
'x_embedding_id': tf.FixedLenFeature([1], dtype=tf.int64),
'y_embedding_id': tf.FixedLenFeature([1], dtype=tf.int64),
'nc_embedding_id': tf.FixedLenFeature([1], dtype=tf.int64),
'reprs': tf.FixedLenSequenceFeature(
shape=(), dtype=tf.string, allow_missing=True),
'counts': tf.FixedLenSequenceFeature(
shape=(), dtype=tf.int64, allow_missing=True),
'rel_id': tf.FixedLenFeature([1], dtype=tf.int64)
})
x_embedding_id = tf.squeeze(features['x_embedding_id'], [-1])
y_embedding_id = tf.squeeze(features['y_embedding_id'], [-1])
nc_embedding_id = tf.squeeze(features['nc_embedding_id'], [-1])
labels = tf.squeeze(features['rel_id'], [-1])
path_counts = tf.to_float(tf.reshape(features['counts'], [batch_size, -1]))
path_embedding_id = None
if path_to_index:
path_embedding_id = path_to_index.lookup(features['reprs'])
return (
x_embedding_id, y_embedding_id, nc_embedding_id,
path_embedding_id, path_counts, labels)