forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
464 lines (366 loc) · 17.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Training script for the DeepLab model.
See model.py for more details and usage.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import tensorflow as tf
from tensorflow.contrib import quantize as contrib_quantize
from tensorflow.contrib import tfprof as contrib_tfprof
from deeplab import common
from deeplab import model
from deeplab.datasets import data_generator
from deeplab.utils import train_utils
from deployment import model_deploy
slim = tf.contrib.slim
flags = tf.app.flags
FLAGS = flags.FLAGS
# Settings for multi-GPUs/multi-replicas training.
flags.DEFINE_integer('num_clones', 1, 'Number of clones to deploy.')
flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.')
flags.DEFINE_integer('num_replicas', 1, 'Number of worker replicas.')
flags.DEFINE_integer('startup_delay_steps', 15,
'Number of training steps between replicas startup.')
flags.DEFINE_integer(
'num_ps_tasks', 0,
'The number of parameter servers. If the value is 0, then '
'the parameters are handled locally by the worker.')
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
flags.DEFINE_integer('task', 0, 'The task ID.')
# Settings for logging.
flags.DEFINE_string('train_logdir', None,
'Where the checkpoint and logs are stored.')
flags.DEFINE_integer('log_steps', 10,
'Display logging information at every log_steps.')
flags.DEFINE_integer('save_interval_secs', 1200,
'How often, in seconds, we save the model to disk.')
flags.DEFINE_integer('save_summaries_secs', 600,
'How often, in seconds, we compute the summaries.')
flags.DEFINE_boolean(
'save_summaries_images', False,
'Save sample inputs, labels, and semantic predictions as '
'images to summary.')
# Settings for profiling.
flags.DEFINE_string('profile_logdir', None,
'Where the profile files are stored.')
# Settings for training strategy.
flags.DEFINE_enum('optimizer', 'momentum', ['momentum', 'adam'],
'Which optimizer to use.')
# Momentum optimizer flags
flags.DEFINE_enum('learning_policy', 'poly', ['poly', 'step'],
'Learning rate policy for training.')
# Use 0.007 when training on PASCAL augmented training set, train_aug. When
# fine-tuning on PASCAL trainval set, use learning rate=0.0001.
flags.DEFINE_float('base_learning_rate', .0001,
'The base learning rate for model training.')
flags.DEFINE_float('decay_steps', 0.0,
'Decay steps for polynomial learning rate schedule.')
flags.DEFINE_float('end_learning_rate', 0.0,
'End learning rate for polynomial learning rate schedule.')
flags.DEFINE_float('learning_rate_decay_factor', 0.1,
'The rate to decay the base learning rate.')
flags.DEFINE_integer('learning_rate_decay_step', 2000,
'Decay the base learning rate at a fixed step.')
flags.DEFINE_float('learning_power', 0.9,
'The power value used in the poly learning policy.')
flags.DEFINE_integer('training_number_of_steps', 30000,
'The number of steps used for training')
flags.DEFINE_float('momentum', 0.9, 'The momentum value to use')
# Adam optimizer flags
flags.DEFINE_float('adam_learning_rate', 0.001,
'Learning rate for the adam optimizer.')
flags.DEFINE_float('adam_epsilon', 1e-08, 'Adam optimizer epsilon.')
# When fine_tune_batch_norm=True, use at least batch size larger than 12
# (batch size more than 16 is better). Otherwise, one could use smaller batch
# size and set fine_tune_batch_norm=False.
flags.DEFINE_integer('train_batch_size', 8,
'The number of images in each batch during training.')
# For weight_decay, use 0.00004 for MobileNet-V2 or Xcpetion model variants.
# Use 0.0001 for ResNet model variants.
flags.DEFINE_float('weight_decay', 0.00004,
'The value of the weight decay for training.')
flags.DEFINE_list('train_crop_size', '513,513',
'Image crop size [height, width] during training.')
flags.DEFINE_float(
'last_layer_gradient_multiplier', 1.0,
'The gradient multiplier for last layers, which is used to '
'boost the gradient of last layers if the value > 1.')
flags.DEFINE_boolean('upsample_logits', True,
'Upsample logits during training.')
# Hyper-parameters for NAS training strategy.
flags.DEFINE_float(
'drop_path_keep_prob', 1.0,
'Probability to keep each path in the NAS cell when training.')
# Settings for fine-tuning the network.
flags.DEFINE_string('tf_initial_checkpoint', None,
'The initial checkpoint in tensorflow format.')
# Set to False if one does not want to re-use the trained classifier weights.
flags.DEFINE_boolean('initialize_last_layer', True,
'Initialize the last layer.')
flags.DEFINE_boolean('last_layers_contain_logits_only', False,
'Only consider logits as last layers or not.')
flags.DEFINE_integer('slow_start_step', 0,
'Training model with small learning rate for few steps.')
flags.DEFINE_float('slow_start_learning_rate', 1e-4,
'Learning rate employed during slow start.')
# Set to True if one wants to fine-tune the batch norm parameters in DeepLabv3.
# Set to False and use small batch size to save GPU memory.
flags.DEFINE_boolean('fine_tune_batch_norm', True,
'Fine tune the batch norm parameters or not.')
flags.DEFINE_float('min_scale_factor', 0.5,
'Mininum scale factor for data augmentation.')
flags.DEFINE_float('max_scale_factor', 2.,
'Maximum scale factor for data augmentation.')
flags.DEFINE_float('scale_factor_step_size', 0.25,
'Scale factor step size for data augmentation.')
# For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or
# rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note
# one could use different atrous_rates/output_stride during training/evaluation.
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_integer('output_stride', 16,
'The ratio of input to output spatial resolution.')
# Hard example mining related flags.
flags.DEFINE_integer(
'hard_example_mining_step', 0,
'The training step in which exact hard example mining kicks off. Note we '
'gradually reduce the mining percent to the specified '
'top_k_percent_pixels. For example, if hard_example_mining_step=100K and '
'top_k_percent_pixels=0.25, then mining percent will gradually reduce from '
'100% to 25% until 100K steps after which we only mine top 25% pixels.')
flags.DEFINE_float(
'top_k_percent_pixels', 1.0,
'The top k percent pixels (in terms of the loss values) used to compute '
'loss during training. This is useful for hard pixel mining.')
# Quantization setting.
flags.DEFINE_integer(
'quantize_delay_step', -1,
'Steps to start quantized training. If < 0, will not quantize model.')
# Dataset settings.
flags.DEFINE_string('dataset', 'pascal_voc_seg',
'Name of the segmentation dataset.')
flags.DEFINE_string('train_split', 'train',
'Which split of the dataset to be used for training')
flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.')
def _build_deeplab(iterator, outputs_to_num_classes, ignore_label):
"""Builds a clone of DeepLab.
Args:
iterator: An iterator of type tf.data.Iterator for images and labels.
outputs_to_num_classes: A map from output type to the number of classes. For
example, for the task of semantic segmentation with 21 semantic classes,
we would have outputs_to_num_classes['semantic'] = 21.
ignore_label: Ignore label.
"""
samples = iterator.get_next()
# Add name to input and label nodes so we can add to summary.
samples[common.IMAGE] = tf.identity(samples[common.IMAGE], name=common.IMAGE)
samples[common.LABEL] = tf.identity(samples[common.LABEL], name=common.LABEL)
model_options = common.ModelOptions(
outputs_to_num_classes=outputs_to_num_classes,
crop_size=[int(sz) for sz in FLAGS.train_crop_size],
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
outputs_to_scales_to_logits = model.multi_scale_logits(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid,
weight_decay=FLAGS.weight_decay,
is_training=True,
fine_tune_batch_norm=FLAGS.fine_tune_batch_norm,
nas_training_hyper_parameters={
'drop_path_keep_prob': FLAGS.drop_path_keep_prob,
'total_training_steps': FLAGS.training_number_of_steps,
})
# Add name to graph node so we can add to summary.
output_type_dict = outputs_to_scales_to_logits[common.OUTPUT_TYPE]
output_type_dict[model.MERGED_LOGITS_SCOPE] = tf.identity(
output_type_dict[model.MERGED_LOGITS_SCOPE], name=common.OUTPUT_TYPE)
for output, num_classes in six.iteritems(outputs_to_num_classes):
train_utils.add_softmax_cross_entropy_loss_for_each_scale(
outputs_to_scales_to_logits[output],
samples[common.LABEL],
num_classes,
ignore_label,
loss_weight=model_options.label_weights,
upsample_logits=FLAGS.upsample_logits,
hard_example_mining_step=FLAGS.hard_example_mining_step,
top_k_percent_pixels=FLAGS.top_k_percent_pixels,
scope=output)
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
# Set up deployment (i.e., multi-GPUs and/or multi-replicas).
config = model_deploy.DeploymentConfig(
num_clones=FLAGS.num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS.task,
num_replicas=FLAGS.num_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)
# Split the batch across GPUs.
assert FLAGS.train_batch_size % config.num_clones == 0, (
'Training batch size not divisble by number of clones (GPUs).')
clone_batch_size = FLAGS.train_batch_size // config.num_clones
tf.gfile.MakeDirs(FLAGS.train_logdir)
tf.logging.info('Training on %s set', FLAGS.train_split)
with tf.Graph().as_default() as graph:
with tf.device(config.inputs_device()):
dataset = data_generator.Dataset(
dataset_name=FLAGS.dataset,
split_name=FLAGS.train_split,
dataset_dir=FLAGS.dataset_dir,
batch_size=clone_batch_size,
crop_size=[int(sz) for sz in FLAGS.train_crop_size],
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
min_scale_factor=FLAGS.min_scale_factor,
max_scale_factor=FLAGS.max_scale_factor,
scale_factor_step_size=FLAGS.scale_factor_step_size,
model_variant=FLAGS.model_variant,
num_readers=4,
is_training=True,
should_shuffle=True,
should_repeat=True)
# Create the global step on the device storing the variables.
with tf.device(config.variables_device()):
global_step = tf.train.get_or_create_global_step()
# Define the model and create clones.
model_fn = _build_deeplab
model_args = (dataset.get_one_shot_iterator(), {
common.OUTPUT_TYPE: dataset.num_of_classes
}, dataset.ignore_label)
clones = model_deploy.create_clones(config, model_fn, args=model_args)
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by model_fn.
first_clone_scope = config.clone_scope(0)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
# Gather initial summaries.
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
# Add summaries for model variables.
for model_var in tf.model_variables():
summaries.add(tf.summary.histogram(model_var.op.name, model_var))
# Add summaries for images, labels, semantic predictions
if FLAGS.save_summaries_images:
summary_image = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, common.IMAGE)).strip('/'))
summaries.add(
tf.summary.image('samples/%s' % common.IMAGE, summary_image))
first_clone_label = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, common.LABEL)).strip('/'))
# Scale up summary image pixel values for better visualization.
pixel_scaling = max(1, 255 // dataset.num_of_classes)
summary_label = tf.cast(first_clone_label * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image('samples/%s' % common.LABEL, summary_label))
first_clone_output = graph.get_tensor_by_name(
('%s/%s:0' % (first_clone_scope, common.OUTPUT_TYPE)).strip('/'))
predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)
summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8)
summaries.add(
tf.summary.image(
'samples/%s' % common.OUTPUT_TYPE, summary_predictions))
# Add summaries for losses.
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))
# Build the optimizer based on the device specification.
with tf.device(config.optimizer_device()):
learning_rate = train_utils.get_model_learning_rate(
FLAGS.learning_policy,
FLAGS.base_learning_rate,
FLAGS.learning_rate_decay_step,
FLAGS.learning_rate_decay_factor,
FLAGS.training_number_of_steps,
FLAGS.learning_power,
FLAGS.slow_start_step,
FLAGS.slow_start_learning_rate,
decay_steps=FLAGS.decay_steps,
end_learning_rate=FLAGS.end_learning_rate)
summaries.add(tf.summary.scalar('learning_rate', learning_rate))
if FLAGS.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, FLAGS.momentum)
elif FLAGS.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(
learning_rate=FLAGS.adam_learning_rate, epsilon=FLAGS.adam_epsilon)
else:
raise ValueError('Unknown optimizer')
if FLAGS.quantize_delay_step >= 0:
if FLAGS.num_clones > 1:
raise ValueError('Quantization doesn\'t support multi-clone yet.')
contrib_quantize.create_training_graph(
quant_delay=FLAGS.quantize_delay_step)
startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps
with tf.device(config.variables_device()):
total_loss, grads_and_vars = model_deploy.optimize_clones(
clones, optimizer)
total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.')
summaries.add(tf.summary.scalar('total_loss', total_loss))
# Modify the gradients for biases and last layer variables.
last_layers = model.get_extra_layer_scopes(
FLAGS.last_layers_contain_logits_only)
grad_mult = train_utils.get_model_gradient_multipliers(
last_layers, FLAGS.last_layer_gradient_multiplier)
if grad_mult:
grads_and_vars = slim.learning.multiply_gradients(
grads_and_vars, grad_mult)
# Create gradient update op.
grad_updates = optimizer.apply_gradients(
grads_and_vars, global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops)
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(total_loss, name='train_op')
# Add the summaries from the first clone. These contain the summaries
# created by model_fn and either optimize_clones() or _gather_clone_loss().
summaries |= set(
tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
# Merge all summaries together.
summary_op = tf.summary.merge(list(summaries))
# Soft placement allows placing on CPU ops without GPU implementation.
session_config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)
# Start the training.
profile_dir = FLAGS.profile_logdir
if profile_dir is not None:
tf.gfile.MakeDirs(profile_dir)
with contrib_tfprof.ProfileContext(
enabled=profile_dir is not None, profile_dir=profile_dir):
init_fn = None
if FLAGS.tf_initial_checkpoint:
init_fn = train_utils.get_model_init_fn(
FLAGS.train_logdir,
FLAGS.tf_initial_checkpoint,
FLAGS.initialize_last_layer,
last_layers,
ignore_missing_vars=True)
slim.learning.train(
train_tensor,
logdir=FLAGS.train_logdir,
log_every_n_steps=FLAGS.log_steps,
master=FLAGS.master,
number_of_steps=FLAGS.training_number_of_steps,
is_chief=(FLAGS.task == 0),
session_config=session_config,
startup_delay_steps=startup_delay_steps,
init_fn=init_fn,
summary_op=summary_op,
save_summaries_secs=FLAGS.save_summaries_secs,
save_interval_secs=FLAGS.save_interval_secs)
if __name__ == '__main__':
flags.mark_flag_as_required('train_logdir')
flags.mark_flag_as_required('dataset_dir')
tf.app.run()