forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
input_preprocess.py
139 lines (117 loc) · 5.45 KB
/
input_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Prepares the data used for DeepLab training/evaluation."""
import tensorflow as tf
from deeplab.core import feature_extractor
from deeplab.core import preprocess_utils
# The probability of flipping the images and labels
# left-right during training
_PROB_OF_FLIP = 0.5
def preprocess_image_and_label(image,
label,
crop_height,
crop_width,
min_resize_value=None,
max_resize_value=None,
resize_factor=None,
min_scale_factor=1.,
max_scale_factor=1.,
scale_factor_step_size=0,
ignore_label=255,
is_training=True,
model_variant=None):
"""Preprocesses the image and label.
Args:
image: Input image.
label: Ground truth annotation label.
crop_height: The height value used to crop the image and label.
crop_width: The width value used to crop the image and label.
min_resize_value: Desired size of the smaller image side.
max_resize_value: Maximum allowed size of the larger image side.
resize_factor: Resized dimensions are multiple of factor plus one.
min_scale_factor: Minimum scale factor value.
max_scale_factor: Maximum scale factor value.
scale_factor_step_size: The step size from min scale factor to max scale
factor. The input is randomly scaled based on the value of
(min_scale_factor, max_scale_factor, scale_factor_step_size).
ignore_label: The label value which will be ignored for training and
evaluation.
is_training: If the preprocessing is used for training or not.
model_variant: Model variant (string) for choosing how to mean-subtract the
images. See feature_extractor.network_map for supported model variants.
Returns:
original_image: Original image (could be resized).
processed_image: Preprocessed image.
label: Preprocessed ground truth segmentation label.
Raises:
ValueError: Ground truth label not provided during training.
"""
if is_training and label is None:
raise ValueError('During training, label must be provided.')
if model_variant is None:
tf.logging.warning('Default mean-subtraction is performed. Please specify '
'a model_variant. See feature_extractor.network_map for '
'supported model variants.')
# Keep reference to original image.
original_image = image
processed_image = tf.cast(image, tf.float32)
if label is not None:
label = tf.cast(label, tf.int32)
# Resize image and label to the desired range.
if min_resize_value or max_resize_value:
[processed_image, label] = (
preprocess_utils.resize_to_range(
image=processed_image,
label=label,
min_size=min_resize_value,
max_size=max_resize_value,
factor=resize_factor,
align_corners=True))
# The `original_image` becomes the resized image.
original_image = tf.identity(processed_image)
# Data augmentation by randomly scaling the inputs.
if is_training:
scale = preprocess_utils.get_random_scale(
min_scale_factor, max_scale_factor, scale_factor_step_size)
processed_image, label = preprocess_utils.randomly_scale_image_and_label(
processed_image, label, scale)
processed_image.set_shape([None, None, 3])
# Pad image and label to have dimensions >= [crop_height, crop_width]
image_shape = tf.shape(processed_image)
image_height = image_shape[0]
image_width = image_shape[1]
target_height = image_height + tf.maximum(crop_height - image_height, 0)
target_width = image_width + tf.maximum(crop_width - image_width, 0)
# Pad image with mean pixel value.
mean_pixel = tf.reshape(
feature_extractor.mean_pixel(model_variant), [1, 1, 3])
processed_image = preprocess_utils.pad_to_bounding_box(
processed_image, 0, 0, target_height, target_width, mean_pixel)
if label is not None:
label = preprocess_utils.pad_to_bounding_box(
label, 0, 0, target_height, target_width, ignore_label)
# Randomly crop the image and label.
if is_training and label is not None:
processed_image, label = preprocess_utils.random_crop(
[processed_image, label], crop_height, crop_width)
processed_image.set_shape([crop_height, crop_width, 3])
if label is not None:
label.set_shape([crop_height, crop_width, 1])
if is_training:
# Randomly left-right flip the image and label.
processed_image, label, _ = preprocess_utils.flip_dim(
[processed_image, label], _PROB_OF_FLIP, dim=1)
return original_image, processed_image, label