forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common.py
295 lines (246 loc) · 10.9 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides flags that are common to scripts.
Common flags from train/eval/vis/export_model.py are collected in this script.
"""
import collections
import copy
import json
import tensorflow as tf
flags = tf.app.flags
# Flags for input preprocessing.
flags.DEFINE_integer('min_resize_value', None,
'Desired size of the smaller image side.')
flags.DEFINE_integer('max_resize_value', None,
'Maximum allowed size of the larger image side.')
flags.DEFINE_integer('resize_factor', None,
'Resized dimensions are multiple of factor plus one.')
flags.DEFINE_boolean('keep_aspect_ratio', True,
'Keep aspect ratio after resizing or not.')
# Model dependent flags.
flags.DEFINE_integer('logits_kernel_size', 1,
'The kernel size for the convolutional kernel that '
'generates logits.')
# When using 'mobilent_v2', we set atrous_rates = decoder_output_stride = None.
# When using 'xception_65' or 'resnet_v1' model variants, we set
# atrous_rates = [6, 12, 18] (output stride 16) and decoder_output_stride = 4.
# See core/feature_extractor.py for supported model variants.
flags.DEFINE_string('model_variant', 'mobilenet_v2', 'DeepLab model variant.')
flags.DEFINE_multi_float('image_pyramid', None,
'Input scales for multi-scale feature extraction.')
flags.DEFINE_boolean('add_image_level_feature', True,
'Add image level feature.')
flags.DEFINE_list(
'image_pooling_crop_size', None,
'Image pooling crop size [height, width] used in the ASPP module. When '
'value is None, the model performs image pooling with "crop_size". This'
'flag is useful when one likes to use different image pooling sizes.')
flags.DEFINE_list(
'image_pooling_stride', '1,1',
'Image pooling stride [height, width] used in the ASPP image pooling. ')
flags.DEFINE_boolean('aspp_with_batch_norm', True,
'Use batch norm parameters for ASPP or not.')
flags.DEFINE_boolean('aspp_with_separable_conv', True,
'Use separable convolution for ASPP or not.')
# Defaults to None. Set multi_grid = [1, 2, 4] when using provided
# 'resnet_v1_{50,101}_beta' checkpoints.
flags.DEFINE_multi_integer('multi_grid', None,
'Employ a hierarchy of atrous rates for ResNet.')
flags.DEFINE_float('depth_multiplier', 1.0,
'Multiplier for the depth (number of channels) for all '
'convolution ops used in MobileNet.')
flags.DEFINE_integer('divisible_by', None,
'An integer that ensures the layer # channels are '
'divisible by this value. Used in MobileNet.')
# For `xception_65`, use decoder_output_stride = 4. For `mobilenet_v2`, use
# decoder_output_stride = None.
flags.DEFINE_list('decoder_output_stride', None,
'Comma-separated list of strings with the number specifying '
'output stride of low-level features at each network level.'
'Current semantic segmentation implementation assumes at '
'most one output stride (i.e., either None or a list with '
'only one element.')
flags.DEFINE_boolean('decoder_use_separable_conv', True,
'Employ separable convolution for decoder or not.')
flags.DEFINE_enum('merge_method', 'max', ['max', 'avg'],
'Scheme to merge multi scale features.')
flags.DEFINE_boolean(
'prediction_with_upsampled_logits', True,
'When performing prediction, there are two options: (1) bilinear '
'upsampling the logits followed by softmax, or (2) softmax followed by '
'bilinear upsampling.')
flags.DEFINE_string(
'dense_prediction_cell_json',
'',
'A JSON file that specifies the dense prediction cell.')
flags.DEFINE_integer(
'nas_stem_output_num_conv_filters', 20,
'Number of filters of the stem output tensor in NAS models.')
flags.DEFINE_bool('nas_use_classification_head', False,
'Use image classification head for NAS model variants.')
flags.DEFINE_bool('nas_remove_os32_stride', False,
'Remove the stride in the output stride 32 branch.')
flags.DEFINE_bool('use_bounded_activation', False,
'Whether or not to use bounded activations. Bounded '
'activations better lend themselves to quantized inference.')
flags.DEFINE_boolean('aspp_with_concat_projection', True,
'ASPP with concat projection.')
flags.DEFINE_boolean('aspp_with_squeeze_and_excitation', False,
'ASPP with squeeze and excitation.')
flags.DEFINE_integer('aspp_convs_filters', 256, 'ASPP convolution filters.')
flags.DEFINE_boolean('decoder_use_sum_merge', False,
'Decoder uses simply sum merge.')
flags.DEFINE_integer('decoder_filters', 256, 'Decoder filters.')
flags.DEFINE_boolean('decoder_output_is_logits', False,
'Use decoder output as logits or not.')
flags.DEFINE_boolean('image_se_uses_qsigmoid', False, 'Use q-sigmoid.')
flags.DEFINE_multi_float(
'label_weights', None,
'A list of label weights, each element represents the weight for the label '
'of its index, for example, label_weights = [0.1, 0.5] means the weight '
'for label 0 is 0.1 and the weight for label 1 is 0.5. If set as None, all '
'the labels have the same weight 1.0.')
flags.DEFINE_float('batch_norm_decay', 0.9997, 'Batchnorm decay.')
FLAGS = flags.FLAGS
# Constants
# Perform semantic segmentation predictions.
OUTPUT_TYPE = 'semantic'
# Semantic segmentation item names.
LABELS_CLASS = 'labels_class'
IMAGE = 'image'
HEIGHT = 'height'
WIDTH = 'width'
IMAGE_NAME = 'image_name'
LABEL = 'label'
ORIGINAL_IMAGE = 'original_image'
# Test set name.
TEST_SET = 'test'
class ModelOptions(
collections.namedtuple('ModelOptions', [
'outputs_to_num_classes',
'crop_size',
'atrous_rates',
'output_stride',
'preprocessed_images_dtype',
'merge_method',
'add_image_level_feature',
'image_pooling_crop_size',
'image_pooling_stride',
'aspp_with_batch_norm',
'aspp_with_separable_conv',
'multi_grid',
'decoder_output_stride',
'decoder_use_separable_conv',
'logits_kernel_size',
'model_variant',
'depth_multiplier',
'divisible_by',
'prediction_with_upsampled_logits',
'dense_prediction_cell_config',
'nas_architecture_options',
'use_bounded_activation',
'aspp_with_concat_projection',
'aspp_with_squeeze_and_excitation',
'aspp_convs_filters',
'decoder_use_sum_merge',
'decoder_filters',
'decoder_output_is_logits',
'image_se_uses_qsigmoid',
'label_weights',
'sync_batch_norm_method',
'batch_norm_decay',
])):
"""Immutable class to hold model options."""
__slots__ = ()
def __new__(cls,
outputs_to_num_classes,
crop_size=None,
atrous_rates=None,
output_stride=8,
preprocessed_images_dtype=tf.float32):
"""Constructor to set default values.
Args:
outputs_to_num_classes: A dictionary from output type to the number of
classes. For example, for the task of semantic segmentation with 21
semantic classes, we would have outputs_to_num_classes['semantic'] = 21.
crop_size: A tuple [crop_height, crop_width].
atrous_rates: A list of atrous convolution rates for ASPP.
output_stride: The ratio of input to output spatial resolution.
preprocessed_images_dtype: The type after the preprocessing function.
Returns:
A new ModelOptions instance.
"""
dense_prediction_cell_config = None
if FLAGS.dense_prediction_cell_json:
with tf.gfile.Open(FLAGS.dense_prediction_cell_json, 'r') as f:
dense_prediction_cell_config = json.load(f)
decoder_output_stride = None
if FLAGS.decoder_output_stride:
decoder_output_stride = [
int(x) for x in FLAGS.decoder_output_stride]
if sorted(decoder_output_stride, reverse=True) != decoder_output_stride:
raise ValueError('Decoder output stride need to be sorted in the '
'descending order.')
image_pooling_crop_size = None
if FLAGS.image_pooling_crop_size:
image_pooling_crop_size = [int(x) for x in FLAGS.image_pooling_crop_size]
image_pooling_stride = [1, 1]
if FLAGS.image_pooling_stride:
image_pooling_stride = [int(x) for x in FLAGS.image_pooling_stride]
label_weights = FLAGS.label_weights
if label_weights is None:
label_weights = 1.0
nas_architecture_options = {
'nas_stem_output_num_conv_filters': (
FLAGS.nas_stem_output_num_conv_filters),
'nas_use_classification_head': FLAGS.nas_use_classification_head,
'nas_remove_os32_stride': FLAGS.nas_remove_os32_stride,
}
return super(ModelOptions, cls).__new__(
cls, outputs_to_num_classes, crop_size, atrous_rates, output_stride,
preprocessed_images_dtype,
FLAGS.merge_method,
FLAGS.add_image_level_feature,
image_pooling_crop_size,
image_pooling_stride,
FLAGS.aspp_with_batch_norm,
FLAGS.aspp_with_separable_conv,
FLAGS.multi_grid,
decoder_output_stride,
FLAGS.decoder_use_separable_conv,
FLAGS.logits_kernel_size,
FLAGS.model_variant,
FLAGS.depth_multiplier,
FLAGS.divisible_by,
FLAGS.prediction_with_upsampled_logits,
dense_prediction_cell_config,
nas_architecture_options,
FLAGS.use_bounded_activation,
FLAGS.aspp_with_concat_projection,
FLAGS.aspp_with_squeeze_and_excitation,
FLAGS.aspp_convs_filters,
FLAGS.decoder_use_sum_merge,
FLAGS.decoder_filters,
FLAGS.decoder_output_is_logits,
FLAGS.image_se_uses_qsigmoid,
label_weights,
'None',
FLAGS.batch_norm_decay)
def __deepcopy__(self, memo):
return ModelOptions(copy.deepcopy(self.outputs_to_num_classes),
self.crop_size,
self.atrous_rates,
self.output_stride,
self.preprocessed_images_dtype)