-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinference.py
246 lines (226 loc) · 9.52 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import sys
from typing import List
import fire
import torch
import pickle
import numpy as np
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer
from utils.prompter import Prompter
from model import LLM4Rec
from utils.data_utils import BipartiteGraphDataset, BipartiteGraphCollator, SequentialDataset, SequentialCollator
from utils.eval_utils import RecallPrecision_atK, MRR_atK, MAP_atK, NDCG_atK, AUC, getLabel
def train(
# model/data params
base_model: str = "",
data_path: str = "",
cache_dir: str = "",
checkpoint_dir: str = "",
output_dir: str = "",
task_type: str = "",
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 8,
num_epochs: int = 1,
learning_rate: float = 3e-4,
cutoff_len: int = 4096,
val_set_size: int = 0,
lr_scheduler: str = "cosine",
warmup_steps: int = 100,
# lora hyperparams
lora_r: int = 16,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
# from peft docs: ["q_proj", "k_proj", "v_proj", "o_proj", "fc_in", "fc_out", "wte", "gate_proj", "down_proj", "up_proj"]
lora_target_modules: List[str] = ["gate_proj", "down_proj", "up_proj"],
# llm hyperparams
train_on_inputs: bool = False, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca"
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Params using prompt template {prompt_template_name}:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"cache_dir: {cache_dir}\n"
f"checkpoint_dir: {checkpoint_dir}\n"
f"output_dir: {output_dir}\n"
f"task_type: {task_type}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"lr_scheduler: {lr_scheduler}\n"
f"warmup_steps: {warmup_steps}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = batch_size // micro_batch_size
prompter = Prompter(prompt_template_name)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
print("gradient_accumulation_steps: ", gradient_accumulation_steps)
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
if task_type == 'general':
dataset = BipartiteGraphDataset(data_path)
user_embed, item_embed = (pickle.load(open(data_path + 'VanillaMF_user_embed.pkl', 'rb')).cuda(),
pickle.load(open(data_path + 'VanillaMF_item_embed.pkl', 'rb')).cuda())
item_embed = torch.cat([item_embed.mean(dim=0).unsqueeze(0), item_embed], dim=0)
data_collator = BipartiteGraphCollator()
elif task_type == 'sequential':
dataset = SequentialDataset(data_path, 50)
user_embed, item_embed = None, pickle.load(open(data_path + 'SASRec_item_embed.pkl', 'rb')).cuda()
data_collator = SequentialCollator()
state_dict = torch.load(checkpoint_dir + 'pytorch_model.bin', map_location='cpu')
state_dict = {k: v.cuda() for k, v in state_dict.items() if 'lora' in k or 'user_proj' in k or 'input_proj' in k or 'score' in k}
model = LLM4Rec(
base_model=base_model,
task_type=task_type,
cache_dir=cache_dir,
input_dim=64,
output_dim=dataset.m_item,
lora_r=lora_r,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
lora_target_modules=lora_target_modules,
device_map=device_map,
instruction_text=prompter.generate_prompt(task_type),
user_embeds=user_embed,
input_embeds=item_embed,
)
model.load_state_dict(state_dict, strict=False)
del state_dict
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=dataset,
eval_dataset=None,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
# dataloader_num_workers=16,
fp16=True,
logging_steps=1,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=200 if val_set_size > 0 else None,
save_steps=1000,
lr_scheduler_type=lr_scheduler,
output_dir=output_dir,
save_total_limit=2,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="none",
run_name=None,
),
data_collator=data_collator,
)
# if torch.__version__ >= "2" and sys.platform != "win32":
# model = torch.compile(model)
model.eval()
topk = [1, 5, 10, 20, 100]
results = {'Precision': np.zeros(len(topk)),
'Recall': np.zeros(len(topk)),
'MRR': np.zeros(len(topk)),
'MAP': np.zeros(len(topk)),
'NDCG': np.zeros(len(topk))}
testData = dataset.testData
users = np.arange(dataset.n_user)
for u in users:
if task_type == 'general':
all_pos = [dataset.allPos[u]]
groundTruth = [testData[u]]
inputs = torch.LongTensor([u] + all_pos[0]).cuda().unsqueeze(0)
inputs_mask = torch.ones(inputs.shape).cuda()
_, ratings = model.predict(inputs, inputs_mask)
exclude_index = []
exclude_items = []
for range_i, its in enumerate(all_pos):
exclude_index.extend([range_i] * len(its))
exclude_items.extend(its)
ratings[exclude_index, exclude_items] = -(1 << 10)
elif task_type == 'sequential':
if len(testData[u]) == 0:
continue
all_pos = [testData[u][0]]
groundTruth = [[testData[u][1]]]
inputs = torch.LongTensor(testData[u][0]).cuda().unsqueeze(0)
inputs_mask = torch.ones(inputs.shape).cuda()
_, ratings = model.predict(inputs, inputs_mask)
exclude_index = []
exclude_items = []
for range_i, its in enumerate(all_pos):
exclude_index.extend([range_i] * len(its))
exclude_items.extend(its)
ratings[exclude_index, exclude_items] = -(1 << 10)
_, ratings_K = torch.topk(ratings, k=topk[-1])
ratings_K = ratings_K.cpu().numpy()
r = getLabel(groundTruth, ratings_K)
for j, k in enumerate(topk):
pre, rec = RecallPrecision_atK(groundTruth, r, k)
mrr = MRR_atK(groundTruth, r, k)
map = MAP_atK(groundTruth, r, k)
ndcg = NDCG_atK(groundTruth, r, k)
results['Precision'][j] += pre
results['Recall'][j] += rec
results['MRR'][j] += mrr
results['MAP'][j] += map
results['NDCG'][j] += ndcg
for key in results.keys():
results[key] /= float(len(users))
print(f'Evaluation for User: \n')
for j, k in enumerate(topk):
print(f'Precision@{k}: {results["Precision"][j]} \n '
f'Recall@{k}: {results["Recall"][j]} \n '
f'MRR@{k}: {results["MRR"][j]} \n '
f'MAP@{k}: {results["MAP"][j]} \n '
f'NDCG@{k}: {results["NDCG"][j]} \n')
if __name__ == "__main__":
torch.cuda.empty_cache()
fire.Fire(train)