-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_prediction.py
81 lines (66 loc) · 3.11 KB
/
get_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import pandas as pd
from collections import defaultdict
import re
# Load the names.tab file into a DataFrame
names_tab_path = 'names.tab' # 请将路径修改为您的文件实际路径
names_df = pd.read_csv(names_tab_path, sep='\t', header=None, names=['name', 'type', 'country', 'frequency'])
# Prepare dictionaries for storing probabilities
forenames_dict = defaultdict(lambda: defaultdict(float))
surnames_dict = defaultdict(lambda: defaultdict(float))
# Fill dictionaries with probabilities based on frequency
for index, row in names_df.iterrows():
name = str(row['name']).lower()
country = row['country']
frequency = row['frequency']
if row['type'] == 'forename':
forenames_dict[name][country] += frequency
else:
surnames_dict[name][country] += frequency
# Normalize probabilities so they sum to 1
for name, countries in forenames_dict.items():
total_freq = sum(countries.values())
for country in countries:
forenames_dict[name][country] /= total_freq
for name, countries in surnames_dict.items():
total_freq = sum(countries.values())
for country in countries:
surnames_dict[name][country] /= total_freq
# Load the CSV file with names to be predicted
csv_file_path = 'ML_predict/combined_users.csv'
users_df = pd.read_csv(csv_file_path)
# Ensure 'fullname' column is treated as string and handle missing values
users_df['fullname'] = users_df['fullname'].fillna('').astype(str)
split_names = users_df['fullname'].apply(lambda x: re.split(r'\s+', x.strip(), maxsplit=1))
users_df['first_name'] = split_names.apply(lambda x: x[0].lower())
users_df['last_name'] = split_names.apply(lambda x: x[1].lower() if len(x) > 1 else '')
# Predict country for each name
def predict_country(first_name, last_name):
country_probs = defaultdict(float)
# Get probabilities from forenames_dict
if first_name in forenames_dict:
for country, prob in forenames_dict[first_name].items():
country_probs[country] += prob
# Get probabilities from surnames_dict
if last_name in surnames_dict:
for country, prob in surnames_dict[last_name].items():
country_probs[country] += prob
# Normalize probabilities so they sum to 1
total_prob = sum(country_probs.values())
if total_prob > 0:
for country in country_probs:
country_probs[country] /= total_prob
# Get the most probable country and its probability
if country_probs:
predicted_country = max(country_probs, key=country_probs.get)
probability = country_probs[predicted_country]
return predicted_country, probability
else:
return 'Unknown', 0.0
# Apply prediction to each row
users_df[['predicted_country', 'probability']] = users_df.apply(
lambda row: pd.Series(predict_country(row['first_name'], row['last_name'])), axis=1
)
# Save the updated DataFrame to a new CSV file
output_file_path = 'ML_predict/combined_users_with_predictions.csv'
users_df.to_csv(output_file_path, index=False)
print(f"Predictions saved to {output_file_path}")