-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·323 lines (259 loc) · 14.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import os
import time
import torch
import random
import argparse
import datetime
import logging
import numpy as np
from pathlib import Path
from timm.utils import NativeScaler, ModelEma
from phe_model import construct_PPNet_dino
from train_eval import train_and_evaluate
from data.datasets import build_dataset
from utils import create_optimizer, create_scheduler, get_logger, load_checkpoint_for_ema, str2bool
from config import pretrain_path, oxford_pet_root, cub_root, car_root, food_101_root, inaturalist_root
def get_args_parser():
parser = argparse.ArgumentParser('PHE training', add_help=False)
# training parameters
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--img_size', type=int, default=224)
parser.add_argument('--prototype_shape', nargs='+', type=int, default=[2000, 192, 1, 1])
parser.add_argument('--prototype_activation_function', type=str, default='log')
parser.add_argument('--add_on_layers_type', type=str, default='regular')
parser.add_argument('--use_global', type=str2bool, default=True)
parser.add_argument('--global_proto_per_class', type=int, default=10)
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--save_ep_freq', default=10, type=int, help='save epoch frequency')
parser.add_argument('--hash_code_length', default=12, type=int)
parser.add_argument('--prototype_dim', default=768, type=int)
parser.add_argument('--alpha', default=0.1, type=float, help='loss weight alpha')
parser.add_argument('--beta', default=3.0, type=float, help='loss weight beta')
# Model Exponential Moving Average
parser.add_argument('--model_ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "cosine"')
parser.add_argument('--features_lr', type=float, default=1e-4)
parser.add_argument('--add_on_layers_lr', type=float, default=1e-3)
parser.add_argument('--prototype_vectors_lr', type=float, default=1e-3)
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-4, metavar='LR', help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=10, metavar='N', help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)')
# Dataset parameters
parser.add_argument('--prop_train_labels', type=float, default=0.5)
parser.add_argument('--mask_theta', type=float, default=0.1)
parser.add_argument('--labeled_nums', type=int, default=0)
parser.add_argument('--unlabeled_nums', type=int, default=0)
parser.add_argument('--data_set', default='cub',
choices=['cub', 'scars', 'food', 'pets', 'Actinopterygii', 'Amphibia', 'Animalia', 'Arachnida', 'Aves', 'Chromista', 'Fungi', 'Insecta', 'Mammalia', 'Mollusca', 'Plantae', 'Protozoa', 'Reptilia'],
type=str, help='Image Net dataset path')
parser.add_argument('--output_dir', default='exp/', help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=1028, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='')
parser.set_defaults(pin_mem=True)
return parser
def get_outlog(args):
if args.eval: # evaluation only
logfile_dir = os.path.join(args.output_dir, "eval-logs")
else: # training
logfile_dir = os.path.join(args.output_dir, "train-logs")
ckpt_dir = os.path.join(args.output_dir, "checkpoints")
tb_dir = os.path.join(args.output_dir, "tf-logs")
tb_log_dir = os.path.join(tb_dir, args.data_set)
os.makedirs(logfile_dir, exist_ok=True)
os.makedirs(ckpt_dir, exist_ok=True)
os.makedirs(tb_dir, exist_ok=True)
os.makedirs(tb_log_dir, exist_ok=True)
logger = get_logger(
level=logging.INFO,
mode="w",
name=None,
logger_fp=os.path.join(
logfile_dir,
args.data_set + ".log"
)
)
return logger
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed) # Numpy module.
random.seed(seed) # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def main(args):
# fix the seed for reproducibility
set_seed(args.seed)
# tb_writer, logger = get_outlog(args)
logger = get_outlog(args)
logger.info("Start running with args: \n{}".format(args))
device = torch.device(args.device)
dataset_train, dataset_val, test_dataset_unlabelled = build_dataset(args=args)
logger.info("train {} test: {}".format(len(dataset_train), len(dataset_val)))
logger.info("test_dataset_unlabelled: {}".format(len(test_dataset_unlabelled)))
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
test_loader_unlabelled = torch.utils.data.DataLoader(
test_dataset_unlabelled,
num_workers=8,
batch_size=256,
shuffle=False,
pin_memory=False)
args.prototype_shape=[args.labeled_nums * args.global_proto_per_class, args.prototype_dim, 1, 1]
model = construct_PPNet_dino(img_size=args.img_size,
prototype_shape=args.prototype_shape,
num_classes=args.labeled_nums,
use_global=args.use_global,
global_proto_per_class=args.global_proto_per_class,
prototype_activation_function=args.prototype_activation_function,
add_on_layers_type=args.add_on_layers_type,
mask_theta=args.mask_theta,
pretrain_path=args.pretrain_path,
hash_code_length=args.hash_code_length)
for name, param in model.named_parameters():
if param.requires_grad:
print("require grad:", name)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
joint_optimizer_lrs = {'features': args.features_lr,
'add_on_layers': args.add_on_layers_lr,
'prototype_vectors': args.prototype_vectors_lr,}
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info('number of params: {}'.format(n_parameters))
# timm.optim
optimizer = create_optimizer(args, model_without_ddp, joint_optimizer_lrs=joint_optimizer_lrs)
for i, param_group in enumerate(optimizer.param_groups):
print(f"Param Group {i}:")
print("Parameters:")
for param in param_group['params']:
if param.requires_grad:
print(param.shape)
print("Config:")
for key in param_group:
if key != 'params':
print(f"{key}: {param_group[key]}")
print("\n")
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = torch.nn.CrossEntropyLoss()
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.model_ema:
load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
# if args.eval:
# test_stats = evaluate(data_loader_val, model, device, args)
# logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
# return
logger.info(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
train_stats = train_and_evaluate(
model=model,
data_loader=data_loader_train,
test_loader_unlabelled=test_loader_unlabelled,
optimizer=optimizer, device=device,
epoch=epoch, loss_scaler=loss_scaler,
max_norm=args.clip_grad,
model_ema=model_ema,
args=args,
set_training_mode=True)
logger.info("Averaged stats:")
logger.info(train_stats)
__global_values__["it"] += len(data_loader_train)
lr_scheduler.step(epoch)
# if args.output_dir:
# if (epoch+1) % args.save_ep_freq == 0:
# checkpoint_paths = [output_dir / 'checkpoints/checkpoint-{}.pth'.format(epoch)]
# for checkpoint_path in checkpoint_paths:
# utils.save_on_master({
# 'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'lr_scheduler': lr_scheduler.state_dict(),
# 'epoch': epoch,
# 'model_ema': get_state_dict(model_ema),
# 'scaler': loss_scaler.state_dict(),
# 'args': args,
# }, checkpoint_path)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('PHE training', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
__global_values__ = dict(it=0)
valid_super_categories = ['Actinopterygii', 'Amphibia', 'Animalia', 'Arachnida', 'Aves', 'Chromista', 'Fungi', 'Insecta', 'Mammalia', 'Mollusca', 'Plantae', 'Protozoa', 'Reptilia']
if args.data_set == 'cub':
args.data_root = cub_root
elif args.data_set == 'scars':
args.data_root = car_root
elif args.data_set == 'food':
args.data_root = food_101_root
elif args.data_set == 'pets':
args.data_root = oxford_pet_root
elif args.data_set in valid_super_categories:
args.data_root = inaturalist_root
args.pretrain_path = pretrain_path
main(args)