-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_gan_full.py
431 lines (369 loc) · 13.5 KB
/
train_gan_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import sys, random, os
import numpy as np
from matplotlib import pyplot as plt
import pydot
import cv2
import quantize
NUM_EPOCHS = 2000
LR_D = 0.0004
LR_G = 0.001
BETA_1 = 0.8
EPSILON = 1e-4
ENC_WEIGHT = 200.0
BN_M = 0.8
DO_RATE = 0.25
NOISE_SIGMA = 0.15
CONTINUE_TRAIN = False
NUM_RAND_COMICS = 10
BATCH_SIZE = 16
PARAM_SIZE = 160
COMIC_PARAMS = 320
PREV_V = None
means = None
evals = None
evecs = None
def plotScores(scores, fname, on_top=True):
plt.clf()
ax = plt.gca()
ax.yaxis.tick_right()
ax.yaxis.set_ticks_position('both')
ax.yaxis.grid(True)
for s in scores:
plt.plot(s)
plt.xlabel('Epoch')
loc = ('upper right' if on_top else 'lower right')
plt.legend(['Dis', 'Gen', 'Enc'], loc=loc)
plt.draw()
plt.savefig(fname)
def save_config():
with open('config.txt', 'w') as fout:
fout.write('LR_D: ' + str(LR_D) + '\n')
fout.write('LR_G: ' + str(LR_G) + '\n')
fout.write('BETA_1: ' + str(BETA_1) + '\n')
fout.write('BN_M: ' + str(BN_M) + '\n')
fout.write('BATCH_SIZE: ' + str(BATCH_SIZE) + '\n')
fout.write('DO_RATE: ' + str(DO_RATE) + '\n')
fout.write('NOISE_SIGMA: ' + str(NOISE_SIGMA) + '\n')
fout.write('EPSILON: ' + str(EPSILON) + '\n')
fout.write('ENC_WEIGHT: ' + str(ENC_WEIGHT) + '\n')
fout.write('optimizer_d: ' + type(d_optimizer).__name__ + '\n')
fout.write('optimizer_g: ' + type(g_optimizer).__name__ + '\n')
def to_comic(fname, x):
img = (x * 255.0).astype(np.uint8)
if len(img.shape) == 4:
img = np.concatenate(img, axis=2)
img = np.transpose(img[::-1], (1, 2, 0))
cv2.imwrite(fname, img)
if fname == 'rand0.png':
cv2.imwrite('rand0/r' + str(iters) + '.png', img)
def make_rand_comics(write_dir, rand_vecs):
y_comics = generator.predict(rand_vecs)
for i in xrange(rand_vecs.shape[0]):
to_comic('rand' + str(i) + '.png', y_comics[i])
def make_rand_comics_normalized(write_dir, rand_vecs):
global PREV_V
global means
global evals
global evecs
x_enc = np.squeeze(encoder.predict(x_samples))
means = np.mean(x_enc, axis=0)
x_stds = np.std(x_enc, axis=0)
x_cov = np.cov((x_enc - means).T)
u, s, evecs = np.linalg.svd(x_cov)
evals = np.sqrt(s)
# This step is not necessary, but it makes the random generated test
# samples consistent between epochs so you can see the evolution of
# the training better.
#
# Like square roots, each prinicpal component has 2 solutions that
# represent opposing vector directions. For each component, just
# choose the direction that was closest to the last epoch.
if PREV_V is not None:
d = np.sum(PREV_V * evecs, axis=1)
d = np.where(d > 0.0, 1.0, -1.0)
evecs = evecs * np.expand_dims(d, axis=1)
PREV_V = evecs
print "Evals: ", evals[:6]
np.save(write_dir + 'means.npy', means)
np.save(write_dir + 'stds.npy', x_stds)
np.save(write_dir + 'evals.npy', evals)
np.save(write_dir + 'evecs.npy', evecs)
x_vecs = means + np.dot(rand_vecs * evals, evecs)
make_rand_comics(write_dir, x_vecs)
title = ''
if '/' in write_dir:
title = 'Epoch: ' + write_dir.split('/')[-2][1:]
plt.clf()
plt.title(title)
plt.bar(np.arange(evals.shape[0]), evals, align='center')
plt.draw()
plt.savefig(write_dir + 'evals.png')
plt.clf()
plt.title(title)
plt.bar(np.arange(means.shape[0]), means, align='center')
plt.draw()
plt.savefig(write_dir + 'means.png')
plt.clf()
plt.title(title)
plt.bar(np.arange(x_stds.shape[0]), x_stds, align='center')
plt.draw()
plt.savefig(write_dir + 'stds.png')
def save_models():
discriminator.save('discriminator.h5')
generator.save('generator.h5')
encoder.save('encoder.h5')
print "Saved"
###################################
# Load Keras
###################################
print "Loading Keras..."
import os, math
os.environ['THEANORC'] = "./gpu.theanorc"
os.environ['KERAS_BACKEND'] = "theano"
import theano
print "Theano Version: " + theano.__version__
import keras
print "Keras Version: " + keras.__version__
from keras.layers import Input, Dense, Activation, Dropout, Flatten, Reshape, Permute, RepeatVector, ActivityRegularization, TimeDistributed, Lambda, LeakyReLU
from keras.layers.convolutional import Conv1D, Conv2D, Conv2DTranspose, UpSampling2D, ZeroPadding2D
from keras.layers.embeddings import Embedding
from keras.layers.local import LocallyConnected2D
from keras.layers.pooling import MaxPooling2D, AveragePooling2D
from keras.layers.noise import GaussianNoise
from keras.layers.normalization import BatchNormalization
from keras.layers.recurrent import LSTM, SimpleRNN
from keras.initializers import RandomNormal
from keras.losses import binary_crossentropy
from keras.models import Model, Sequential, load_model
from keras.optimizers import Adam, RMSprop, SGD
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from keras.utils import plot_model
from keras.activations import softmax
from keras import backend as K
from keras import regularizers
from keras.engine.topology import Layer
K.set_image_data_format('channels_first')
#Fix the random seed so that training comparisons are easier to make
np.random.seed(0)
random.seed(0)
z_test = np.random.normal(0.0, 1.0, (NUM_RAND_COMICS, PARAM_SIZE))
###################################
# Load Dataset
###################################
print "Loading Data..."
y_samples = np.load('data/top10000.npy')
y_shape = y_samples.shape
num_samples = y_samples.shape[0]
x_samples = np.expand_dims(np.arange(num_samples), axis=1)
x_shape = x_samples.shape
z_shape = (PARAM_SIZE,)
print "Loaded " + str(num_samples) + " panels."
y_test = y_samples[0].astype(np.float32) / 255.0
x_test = np.copy(x_samples[0:1])
###################################
# Create Model
###################################
if CONTINUE_TRAIN:
print "Loading Discriminator..."
discriminator = load_model('discriminator.h5')
print "Loading Generator..."
generator = load_model('generator.h5')
print "Loading Encoder..."
encoder = load_model('encoder.h5')
print "Loading Vectors..."
PREV_V = np.load('evecs.npy')
z_test = np.load('rand.npy')
else:
print "Building Discriminator..."
input_shape = y_shape[1:]
print (None,) + input_shape
discriminator = Sequential()
discriminator.add(GaussianNoise(NOISE_SIGMA, input_shape=input_shape))
discriminator.add(TimeDistributed(Conv2D(40, (5,5), padding='same')))
discriminator.add(LeakyReLU(0.2))
discriminator.add(TimeDistributed(BatchNormalization(momentum=BN_M, axis=1)))
if DO_RATE > 0:
discriminator.add(Dropout(DO_RATE))
print discriminator.output_shape
discriminator.add(TimeDistributed(MaxPooling2D(4)))
print discriminator.output_shape
discriminator.add(TimeDistributed(Conv2D(80, (5,5), padding='same')))
discriminator.add(LeakyReLU(0.2))
discriminator.add(TimeDistributed(BatchNormalization(momentum=BN_M, axis=1)))
if DO_RATE > 0:
discriminator.add(Dropout(DO_RATE))
print discriminator.output_shape
discriminator.add(TimeDistributed(MaxPooling2D(4)))
print discriminator.output_shape
discriminator.add(TimeDistributed(Conv2D(120, (5,5), padding='same')))
discriminator.add(LeakyReLU(0.2))
discriminator.add(TimeDistributed(BatchNormalization(momentum=BN_M, axis=1)))
if DO_RATE > 0:
discriminator.add(Dropout(DO_RATE))
print discriminator.output_shape
discriminator.add(TimeDistributed(MaxPooling2D(8)))
print discriminator.output_shape
discriminator.add(Flatten(data_format = 'channels_last'))
print discriminator.output_shape
discriminator.add(Dense(1, activation='sigmoid'))
print discriminator.output_shape
print "Building Generator..."
generator = Sequential()
input_shape = (PARAM_SIZE,)
print (None,) + input_shape
generator.add(Dense(600, input_shape=input_shape))
generator.add(LeakyReLU(0.2))
generator.add(BatchNormalization(momentum=BN_M))
print generator.output_shape
generator.add(Dense(y_shape[1] * COMIC_PARAMS))
generator.add(LeakyReLU(0.2))
print generator.output_shape
generator.add(Reshape((y_shape[1], COMIC_PARAMS)))
generator.add(TimeDistributed(BatchNormalization(momentum=BN_M)))
print generator.output_shape
generator.add(TimeDistributed(Dense(200*4*4)))
print generator.output_shape
generator.add(Reshape((y_shape[1], 200,4,4)))
generator.add(LeakyReLU(0.2))
if DO_RATE > 0:
generator.add(Dropout(DO_RATE))
#generator.add(BatchNormalization(momentum=BN_M, axis=1))
print generator.output_shape
generator.add(TimeDistributed(Conv2DTranspose(200, (5,5), strides=(2,2), padding='same')))
generator.add(LeakyReLU(0.2))
if DO_RATE > 0:
generator.add(Dropout(DO_RATE))
#generator.add(BatchNormalization(momentum=BN_M, axis=1))
print generator.output_shape
generator.add(TimeDistributed(Conv2DTranspose(160, (5,5), strides=(2,2), padding='same')))
generator.add(LeakyReLU(0.2))
if DO_RATE > 0:
generator.add(Dropout(DO_RATE))
#generator.add(BatchNormalization(momentum=BN_M, axis=1))
print generator.output_shape
generator.add(TimeDistributed(Conv2DTranspose(120, (5,5), strides=(2,2), padding='same')))
generator.add(LeakyReLU(0.2))
if DO_RATE > 0:
generator.add(Dropout(DO_RATE))
#generator.add(BatchNormalization(momentum=BN_M, axis=1))
print generator.output_shape
generator.add(TimeDistributed(Conv2DTranspose(80, (5,5), strides=(2,2), padding='same')))
generator.add(LeakyReLU(0.2))
if DO_RATE > 0:
generator.add(Dropout(DO_RATE))
#generator.add(BatchNormalization(momentum=BN_M, axis=1))
print generator.output_shape
generator.add(TimeDistributed(Conv2DTranspose(40, (5,5), strides=(2,2), padding='same')))
generator.add(LeakyReLU(0.2))
if DO_RATE > 0:
generator.add(Dropout(DO_RATE))
#generator.add(BatchNormalization(momentum=BN_M, axis=1))
print generator.output_shape
generator.add(TimeDistributed(Conv2DTranspose(3, (5,5), strides=(2,2), padding='same', activation='sigmoid')))
print generator.output_shape
print "Building Encoder..."
encoder = Sequential()
print (None, num_samples)
encoder.add(Embedding(num_samples, PARAM_SIZE, input_length=1, embeddings_initializer=RandomNormal(stddev=1e-4)))
encoder.add(Flatten(data_format = 'channels_last'))
print encoder.output_shape
print "Building GANN..."
d_optimizer = Adam(lr=LR_D, beta_1=BETA_1, epsilon=EPSILON)
g_optimizer = Adam(lr=LR_G, beta_1=BETA_1, epsilon=EPSILON)
discriminator.trainable = True
generator.trainable = False
encoder.trainable = False
d_in_real = Input(shape=y_shape[1:])
d_in_fake = Input(shape=x_shape[1:])
d_fake = generator(encoder(d_in_fake))
d_out_real = discriminator(d_in_real)
d_out_real = Activation('linear', name='d_out_real')(d_out_real)
d_out_fake = discriminator(d_fake)
d_out_fake = Activation('linear', name='d_out_fake')(d_out_fake)
dis_model = Model(inputs=[d_in_real, d_in_fake], outputs=[d_out_real, d_out_fake])
dis_model.compile(
optimizer=d_optimizer,
loss={'d_out_real':'binary_crossentropy', 'd_out_fake':'binary_crossentropy'},
loss_weights={'d_out_real':1.0, 'd_out_fake':1.0})
discriminator.trainable = False
generator.trainable = True
encoder.trainable = True
g_in = Input(shape=x_shape[1:])
g_enc = encoder(g_in)
g_out_img = generator(g_enc)
g_out_img = Activation('linear', name='g_out_img')(g_out_img)
g_out_dis = discriminator(g_out_img)
g_out_dis = Activation('linear', name='g_out_dis')(g_out_dis)
gen_dis_model = Model(inputs=[g_in], outputs=[g_out_img, g_out_dis])
gen_dis_model.compile(
optimizer=g_optimizer,
loss={'g_out_img':'mse', 'g_out_dis':'binary_crossentropy'},
loss_weights={'g_out_img':ENC_WEIGHT, 'g_out_dis':1.0})
plot_model(gen_dis_model, to_file='generator.png', show_shapes=True)
plot_model(dis_model, to_file='discriminator.png', show_shapes=True)
###################################
# Train
###################################
np.save('rand.npy', z_test)
to_comic('gt.png', y_test)
save_models()
print "Training..."
save_config()
generator_loss = []
discriminator_loss = []
encoder_loss = []
ones = np.ones((num_samples,), dtype=np.float32)
zeros = np.zeros((num_samples,), dtype=np.float32)
iters = 0
make_rand_comics_normalized('', z_test)
for iters in xrange(NUM_EPOCHS):
loss_d = 0.0
loss_g = 0.0
loss_e = 0.0
num_d = 0
num_g = 0
num_e = 0
ratio_g = 1
np.random.shuffle(x_samples)
for i in xrange(0, num_samples/BATCH_SIZE):
if i % ratio_g == 0:
#Make samples
j = i / ratio_g
x_batch1 = x_samples[j*BATCH_SIZE:(j + 1)*BATCH_SIZE]
y_batch1 = y_samples[x_batch1[:,0]].astype(np.float32) / 255.0
ones = np.ones((BATCH_SIZE,), dtype=np.float32)
zeros = np.zeros((BATCH_SIZE,), dtype=np.float32)
losses = dis_model.train_on_batch([y_batch1, x_batch1], [ones, zeros])
names = dis_model.metrics_names
loss_d += losses[names.index('d_out_real_loss')]
loss_d += losses[names.index('d_out_fake_loss')]
num_d += 2
x_batch2 = x_samples[i*BATCH_SIZE:(i + 1)*BATCH_SIZE]
y_batch2 = y_samples[x_batch2[:,0]].astype(np.float32) / 255.0
losses = gen_dis_model.train_on_batch([x_batch2], [y_batch2, ones])
names = gen_dis_model.metrics_names
loss_e += losses[names.index('g_out_img_loss')]
loss_g += losses[names.index('g_out_dis_loss')]
num_e += 1
num_g += 1
progress = (i * 100)*BATCH_SIZE / num_samples
sys.stdout.write(
str(progress) + "%" +
" D:" + str(loss_d / num_d) +
" G:" + str(loss_g / num_g) +
" E:" + str(loss_e / num_e) + " ")
sys.stdout.write('\r')
sys.stdout.flush()
sys.stdout.write('\n')
discriminator_loss.append(loss_d / num_d)
generator_loss.append(loss_g / num_g)
encoder_loss.append(loss_e * 10.0 / num_e)
plotScores([discriminator_loss, generator_loss, encoder_loss], 'Scores.png')
save_models()
#Generate some random comics
y_enc = encoder.predict(x_test, batch_size=1)
y_comic = generator.predict(y_enc, batch_size=1)[0]
to_comic('test.png', y_comic)
make_rand_comics_normalized('', z_test)
print "Done"