-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathregression_pred.py
94 lines (71 loc) · 3.78 KB
/
regression_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import numpy as np
import pandas as pd
import torch
from torch.nn import MSELoss
from torch.utils.data import Dataset
from transformers import BertPreTrainedModel, RobertaConfig, RobertaTokenizerFast
from transformers.models.roberta.modeling_roberta import (
RobertaClassificationHead,
RobertaConfig,
RobertaModel,
)
from transformers import Trainer, TrainingArguments
from prepare_finetuning_data import smiles_to_selfies
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--task", default="esol", help="task selection.")
parser.add_argument("--tokenizer_name", default="data/RobertaFastTokenizer", metavar="/path/to/dataset/", help="Tokenizer selection.")
parser.add_argument("--pred_set", default='data/finetuning_datasets/regression/esol/esol_mock.csv', metavar="/path/to/dataset/", help="Test set for predictions.")
parser.add_argument("--training_args", default= "data/finetuned_models/esol_regression/training_args.bin", metavar="/path/to/dataset/", help="Trained model arguments.")
parser.add_argument("--model_name", default='data/finetuned_models/esol_regression', metavar="/path/to/dataset/", help="Path to the model.")
args = parser.parse_args()
class SELFIESTransformers_For_Regression(BertPreTrainedModel):
def __init__(self, config):
super(SELFIESTransformers_For_Regression, self).__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
self.classifier = RobertaClassificationHead(config)
def forward(self, input_ids, attention_mask, labels=None):
outputs = self.roberta(input_ids, attention_mask=attention_mask)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[2:]
if labels is not None:
if self.num_labels == 1: # regression
loss_fct = MSELoss()
loss = loss_fct(logits.squeeze(), labels.squeeze())
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
model_class = SELFIESTransformers_For_Regression
model_name = args.model_name
tokenizer_name = args.tokenizer_name
num_labels = 1
config_class = RobertaConfig
config = config_class.from_pretrained(model_name, num_labels=num_labels)
model_class = SELFIESTransformers_For_Regression
model = model_class.from_pretrained(model_name, config=config)
tokenizer_class = RobertaTokenizerFast
tokenizer = tokenizer_class.from_pretrained(tokenizer_name, do_lower_case=False)
class SELFIESTransfomers_Dataset(Dataset):
def __init__(self, data, tokenizer, MAX_LEN):
text = data
self.examples = tokenizer(text=text, text_pair=None, truncation=True, padding="max_length", max_length=MAX_LEN, return_tensors="pt")
def __len__(self):
return len(self.examples["input_ids"])
def __getitem__(self, index):
item = {key: self.examples[key][index] for key in self.examples}
return item
pred_set = pd.read_csv(args.pred_set)
pred_df_selfies = smiles_to_selfies(pred_set)
MAX_LEN = 128
pred_examples = (pred_df_selfies.iloc[:, 0].astype(str).tolist())
pred_dataset = SELFIESTransfomers_Dataset(pred_examples, tokenizer, MAX_LEN)
training_args = torch.load(args.training_args)
trainer = Trainer(model=model, args=training_args) # the instantiated 🤗 Transformers model to be trained # training arguments, defined above # training dataset # evaluation dataset
raw_pred, label_ids, metrics = trainer.predict(pred_dataset)
y_pred = [i[0] for i in raw_pred]
res = pd.concat([pred_df_selfies, pd.DataFrame(y_pred, columns=["prediction"])], axis = 1)
if not os.path.exists("data/predictions"):
os.makedirs("data/predictions")
res.to_csv("data/predictions/{}_predictions.csv".format(args.task), index=False)