-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_training.py
127 lines (123 loc) · 3.63 KB
/
main_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
from pathlib import Path
from train_deepscreen import train_validation_test_training
from data_processing import create_final_randomized_training_val_test_sets
from chembl_downloading import download_target
parser = argparse.ArgumentParser(description='DEEPScreen arguments')
parser.add_argument(
'--target_chembl_id',
type=str,
default="CHEMBL2051",
metavar='TID',
help='Target ChEMBL ID')
parser.add_argument(
'--model',
type=str,
default="CNNModel1",
metavar='MN',
help='model name (default: CNNModel1)')
parser.add_argument(
'--fc1',
type=int,
default=512,
metavar='FC1',
help='number of neurons in the first fully-connected layer (default:512)')
parser.add_argument(
'--fc2',
type=int,
default=256,
metavar='FC2',
help='number of neurons in the second fully-connected layer (default:256)')
parser.add_argument(
'--lr',
type=float,
default=0.01,
metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument(
'--bs',
type=int,
default=64,
metavar='BS',
help='batch size (default: 32)')
parser.add_argument(
'--dropout',
type=float,
default=0.25,
metavar='DO',
help='dropout rate (default: 0.25)')
parser.add_argument(
'--epoch',
type=int,
default=100,
metavar='EPC',
help='Number of epochs (default: 100)')
parser.add_argument(
'--en',
type=str,
default="deepscreen_scaffold_balanced",
metavar='EN',
help='the name of the experiment (default: my_experiment)')
parser.add_argument(
'--cuda',
type=int,
default=0,
metavar='CORE',
help='The index of cuda core to be used (default: 0)')
parser.add_argument(
'--pchembl_threshold',
type=int,
default=5.8,
metavar='DPT',
help='The threshold for the number of data points to be used (default: 6)')
parser.add_argument(
'--all_proteins',
action='store_true',
help="Download data for all protein targets in ChEMBL")
parser.add_argument(
'--pchembl_threshold_for_download',
type=int,
default=0,
metavar='DPT',
help='The threshold for the number of data points to be used (default: 0)')
parser.add_argument(
'--assay_type',
type=str,
default='B',
help="Assay type(s) to search for, comma-separated")
parser.add_argument(
'--max_cores',
type=int,
default=10,
metavar='MAX_CORES',
help='Maximum number of CPU cores to use (default: 10)')
parser.add_argument(
'--output_file',
type=str,
default='activity_data.csv',
help="Output file to save activity data")
parser.add_argument(
'--smiles_input_file',
type=str,
help="Path to txt file containing ChEMBL IDs")
parser.add_argument(
'--training_dir',
type=str,
default='training_files/target_training_datasets',
help='Path to training datasets directory (default: training_files/target_training_datasets)')
if __name__ == "__main__":
args = parser.parse_args()
print(args)
# Create platform-independent path
target_training_dataset_path = Path(args.training_dir).resolve()
# Ensure directory exists
target_training_dataset_path.mkdir(parents=True, exist_ok=True)
download_target(args)
create_final_randomized_training_val_test_sets(
target_training_dataset_path / args.target_chembl_id / "activity_data.csv",
args.max_cores,
args.target_chembl_id,
target_training_dataset_path,
args.pchembl_threshold)
train_validation_test_training(args.target_chembl_id, args.model, args.fc1, args.fc2, args.lr, args.bs,
args.dropout, args.epoch, args.en, args.cuda)