-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathengine.py
510 lines (456 loc) · 23.7 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import torch
from torch import nn
import time
import numpy as np
import os
from componenets.metrics import metrics
from componenets.new_metrics import metric_new
from methods.STExplainer.stgib_series import STGIB
from methods.STExplainer.stgsat.stgsat import STGSAT
from methods.STExplainer.stgat.stgat import STGAT
import utils.util as util
import pandas as pd
import torch_geometric
import math
from tqdm import tqdm
from scipy.sparse import coo_matrix
from Params import args, logger
import copy
from torch import Tensor
def load_SE(num_node, d_model):
# SE = torch.zeros([num_node, num_node])
# for ind in num_node:
# SE[ind, ind] = 1
# return SE
pe = torch.zeros(num_node, d_model)
position = torch.arange(0, num_node, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
return pe
def Beta_Function(x, alpha, beta):
"""Beta function"""
from scipy.special import gamma
return gamma(alpha + beta) / gamma(alpha) / gamma(beta) * x ** (alpha - 1) * (1 - x) ** (beta - 1)
def record_metric(data_record_dict, data_list, key_list):
"""Record data to the dictionary data_record_dict. It records each key: value pair in the corresponding location of
key_list and data_list into the dictionary."""
if not isinstance(data_list, list):
data_list = [data_list]
if not isinstance(key_list, list):
key_list = [key_list]
assert len(data_list) == len(key_list), "the data_list and key_list should have the same length!"
for data, key in zip(data_list, key_list):
data_record_dict[key] = data
return data_record_dict
def convert_sp_mat_to_sp_tensor(X):
coo = X.tocoo()
i = torch.LongTensor([coo.row, coo.col])
v = torch.from_numpy(coo.data).float()
return torch.sparse.FloatTensor(i, v, coo.shape)
def build_sp_tensor(adj_weight):
coo_adj = coo_matrix(adj_weight)
sp_adj = convert_sp_mat_to_sp_tensor(coo_adj)
return sp_adj
def MAE_torch(pred, true, mask_value=0):
if mask_value != None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.mean(torch.abs(true-pred))
def calculate_selected_nodes(edge_idx, edge_mask, top_k):
# print(edge_mask.shape)
threshold = float(edge_mask.reshape(-1).sort(descending=True).values[min(top_k, edge_mask.shape[0]-1)])
# if top_k == 12:
# threshold = 0.297
hard_mask = (edge_mask > threshold).cpu()
edge_idx_list = torch.where(hard_mask == 1)[0]
selected_nodes = []
edge_index = edge_idx.cpu().numpy()
for edge_idx in edge_idx_list:
selected_nodes += [edge_index[0][edge_idx], edge_index[1][edge_idx]]
selected_nodes = list(set(selected_nodes))
return selected_nodes
def graph_build_zero_filling(X, edge_index, node_mask: np.array):
""" subgraph building through masking the unselected nodes with zero features """
# X: B, L, N, C
# node_mask: N or L
if X.shape[1] == node_mask.shape[0]:
node_mask = torch.unsqueeze(torch.unsqueeze(torch.unsqueeze(node_mask, dim=-1), dim=-1), dim=0)
elif X.shape[2] == node_mask.shape[0]:
node_mask = torch.unsqueeze(torch.unsqueeze(torch.unsqueeze(node_mask, dim=-1), dim=0), dim=0)
else:
raise ValueError('dim not match')
ret_X = X * node_mask
return ret_X, edge_index
def get_graph_build_func(build_method):
if build_method.lower() == 'zero_filling':
return graph_build_zero_filling
elif build_method.lower() == 'split':
return graph_build_split
else:
raise NotImplementedError
def gnn_score(coalition: list, data: Tensor, value_func: str,
subgraph_building_method='zero_filling', spat_dim = True, temp_dim = True, edge_idx_spat: Tensor = None, edge_idx_temp: Tensor = None) -> torch.Tensor:
""" the value of subgraph with selected nodes """
subgraph_build_func = get_graph_build_func(subgraph_building_method)
if spat_dim:
num_nodes = data.shape[2]
mask = torch.zeros(num_nodes).type(torch.float32).to(data.device)
mask[coalition] = 1.0
ret_x, ret_edge_idx_spat = subgraph_build_func(data, edge_idx_spat, mask)
else:
ret_x, ret_edge_idx_spat = data, edge_idx_spat
if temp_dim:
num_nodes = data.shape[1]
mask = torch.zeros(num_nodes).type(torch.float32).to(data.device)
mask[coalition] = 1.0
ret_x, ret_edge_idx_temp = subgraph_build_func(ret_x, edge_idx_temp, mask)
else:
ret_x, ret_edge_idx_temp = ret_x, edge_idx_temp
# print(ret_edge_idx_spat.shape)
# print(ret_edge_idx_temp.shape)
score = value_func(ret_x, edge_idx_spat = ret_edge_idx_spat.long(), edge_idx_temp = ret_edge_idx_temp.long())
# get the score of predicted class for graph or specific node idx
# print(type(score))
# return score.item()
return score
class trainer():
def __init__(self, scaler, sp_adj = None, sp_adj_w = None, temp_adj = None):
self.scaler = scaler
self.sp_adj = sp_adj
self.sp_adj_w = sp_adj_w
self.temp_adj = temp_adj
SE = load_SE(args.num_nodes, 64)
SE = SE.to("cuda:0")
if args.model == 'STGIB':
self.model = STGIB(sp_adj, sp_adj_w, temp_adj)
elif args.model == 'STGSAT':
self.model = STGSAT(sp_adj, sp_adj_w, temp_adj)
elif args.model == 'STGAT':
self.model = STGAT(sp_adj, sp_adj_w, temp_adj)
else:
raise ValueError('Model :{} error'.format(args.model))
if args.testonly:
# self.model.load("checkpoints/TaxiBJ/model_finetune.pth")
self.model.load(args.mdir+args.name+'.pkl')
self.model = self.model.to(args.device)
else:
self.model = self.model.to(args.device)
self.optimizer, self.lr_scheduler = self.get_optim()
self.criterion = self.get_criterion()
# early stop
self.patience = args.patience
self.trigger = 0
self.last_loss = 100000
self.last_mape_loss = 100000
self.best_epoch = 0
self.best_state = copy.deepcopy(self.model.state_dict())
self.build_beta_list(args.beta1, args.beta2)
def decorate_batch(self, batch):
if isinstance(batch, torch.Tensor):
batch = batch.to(args.device)
return batch
elif isinstance(batch, dict):
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch[key] = value.to(args.device)
elif isinstance(value, dict) or isinstance(value, list):
batch[key] = self.decorate_batch(value)
# retain other value types in the batch dict
return batch
elif isinstance(batch, list):
new_batch = []
for value in batch:
if isinstance(value, torch.Tensor):
new_batch.append(value.to(args.device))
elif isinstance(value, dict) or isinstance(value, list):
new_batch.append(self.decorate_batch(value))
else:
# retain other value types in the batch list
new_batch.append(value)
return new_batch
elif isinstance(batch, torch_geometric.data.batch.DataBatch):
return batch.to(args.device)
else:
raise Exception('Unsupported batch type {}'.format(type(batch)))
def train(self, epoch, trnloader, tra_val_metric):
tra_loss = []
pre_loss = []
other_loss = []
gsat_loss_list_sp = []
gsat_loss_list_temp = []
ixz_loss = []
structure_loss = []
self.model.train()
total_days = (args.end_date - args.start_date).days+1
ids = np.random.permutation(list(range(args.lag, total_days)))
num = len(ids)
beta1 = self.beta1_list[epoch] if self.beta1_list is not None else None
beta2 = self.beta2_list[epoch] if self.beta1_list is not None else None
for idx, batch in tqdm(enumerate(trnloader)):
# reg_info = dict()
self.optimizer.zero_grad()
batch = self.decorate_batch(batch)
X, Y, TE = batch
# print('feats :{}'.format(feats.shape)) # 58944, 1
# print('edge_index :{}'.format(bg.edge_index.shape)) # 2, 130560
# print(X)
if args.model == 'STGIB':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X)
elif args.model == 'STGSAT':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X, epoch=epoch)
elif args.model == 'STGAT':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X, epoch=epoch)
output = self.scaler.inverse_transform(output)
Y = self.scaler.inverse_transform(Y)
if args.model == 'STGIB':
main_loss = self.criterion(output, Y)
# IB loss
# reg_info["ixz_list"] -- len: 4, 32*num_nodes
ixz_spat = torch.stack(self.model.reg_info["ixz_list"][:2], -1).mean(0).mean(0).sum()
if args.only_spat is False:
ixz_temp = torch.stack(self.model.reg_info["ixz_list"][2:], -1).mean(0).mean(0).sum()
ixz = ixz_spat + ixz_temp
else:
ixz = ixz_spat
# print('ixz: {}'.format(ixz))
if args.struct_dropout_mode[0] == 'DNsampling' or (args.struct_dropout_mode[0] == 'standard' and len(args.struct_dropout_mode) == 3):
ixz_1_spat = torch.stack(self.model.reg_info["ixz_DN_list"][:2], 1).mean(0).mean(0).sum()
if args.only_spat is False:
ixz_1_temp = torch.stack(self.model.reg_info["ixz_DN_list"][2:], 1).mean(0).mean(0).sum()
ixz_1 = ixz_1_spat + ixz_1_temp
else:
ixz_1 = ixz_1_spat
ixz = ixz + ixz_1
structure_kl_loss = torch.stack(self.model.reg_info["structure_kl_list"]).mean(0).mean()
# print('structure_kl_list: {}'.format(structure_kl_loss.shape))
if args.struct_dropout_mode[0] == 'DNsampling' or (args.struct_dropout_mode[0] == 'standard' and len(args.struct_dropout_mode) == 3):
structure_kl_loss_1 = torch.stack(self.model.reg_info["structure_kl_DN_list"]).mean(0).mean()
structure_kl_loss = structure_kl_loss + structure_kl_loss_1
loss = main_loss + ixz * beta1 + structure_kl_loss * beta2
pre_loss.append(main_loss.item())
ixz_loss.append(ixz.item() * beta1)
structure_loss.append(structure_kl_loss.item() * beta2)
elif args.model == 'STGSAT':
main_loss = self.criterion(output, Y)
## gsat loss
gsat_sp_loss = self.model.reg_info["loss_sp"][0].mean()
gsat_temp_loss = self.model.reg_info["loss_temp"][0].mean()
loss = main_loss + gsat_sp_loss*beta1 + gsat_temp_loss*beta2
pre_loss.append(main_loss.item())
gsat_loss_list_sp.append((gsat_sp_loss*beta1).item())
gsat_loss_list_temp.append((gsat_temp_loss*beta2).item())
elif args.model == 'STGAT':
main_loss = self.criterion(output, Y)
loss = main_loss
pre_loss.append(main_loss.item())
loss.backward()
# add max grad clipping
if args.grad_norm:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5)
self.optimizer.step()
tra_loss.append(loss.item())
self.lr_scheduler.step()
tra_loss = np.mean(tra_loss)
pre_loss = np.mean(pre_loss)
# other_loss = np.mean(other_loss)
# gsat_loss_list = np.mean(gsat_loss_list)
if args.model == 'STGIB':
ixz_loss = np.mean(ixz_loss)
structure_loss = np.mean(structure_loss)
tra_val_metric = record_metric(tra_val_metric, [epoch, tra_loss, pre_loss, ixz_loss, structure_loss], ['epoch', 'train loss', 'predict loss', 'ixz_loss', 'structure_loss'])
elif args.model == 'STGSAT' or args.model == 'STGSAT_abl':
gsat_loss_list_sp = np.mean(gsat_loss_list_sp)
gsat_loss_list_temp = np.mean(gsat_loss_list_temp)
tra_val_metric = record_metric(tra_val_metric, [epoch, tra_loss, pre_loss, gsat_loss_list_sp, gsat_loss_list_temp], ['epoch', 'train loss', 'predict loss', 'gsat loss spat', 'gsat loss temp'])
elif args.model == 'STGAT':
tra_val_metric = record_metric(tra_val_metric, [epoch, tra_loss, pre_loss], ['epoch', 'train loss', 'predict loss'])
else:
raise ValueError('Model :{} error, in Display Loss'.format(args.model))
return tra_val_metric
def build_beta_list(self, beta1=0.001, beta2 = 0.01):
beta_init = 0
init_length = int(args.max_epoch / 4)
anneal_length = int(args.max_epoch / 4)
beta_inter = Beta_Function(np.linspace(0,1,anneal_length),1,4)
beta1_inter = beta_inter / 4 * (beta_init - beta1) + beta1
self.beta1_list = np.concatenate([np.ones(init_length) * beta_init, beta1_inter,
np.ones(args.max_epoch - init_length - anneal_length + 1) * beta1])
beta_init = 0
init_length = int(args.max_epoch / 4)
anneal_length = int(args.max_epoch / 4)
beta_inter = Beta_Function(np.linspace(0,1,anneal_length),1,4)
beta2_inter = beta_inter / 4 * (beta_init - beta2) + beta2
self.beta2_list = np.concatenate([np.ones(init_length) * beta_init, beta2_inter,
np.ones(args.max_epoch - init_length - anneal_length + 1) * beta2])
def validation(self, epoch, valloader, tra_val_metric):
val_loss = []
trues = []
preds = []
ids = np.random.permutation(list(range(args.lag, 921)))
num = len(ids)
with torch.no_grad():
self.model.eval()
for idx, batch in tqdm(enumerate(valloader)):
batch = self.decorate_batch(batch)
X, Y, TE = batch
# print('feats :{}'.format(feats.shape))
if args.model == 'STGIB':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X)
elif args.model == 'STGSAT':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X, epoch=epoch)
elif args.model == 'STGAT':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X, epoch=epoch)
output = self.scaler.inverse_transform(output)
Y = self.scaler.inverse_transform(Y)
if args.model != 'STHSL':
loss = self.criterion(output, Y)
# loss = self.criterion(output, Y)
val_loss.append(loss.item())
trues.append(Y.detach().cpu().numpy())
preds.append(output.detach().cpu().numpy())
val_loss = np.mean(val_loss)
trues, preds = np.concatenate(trues, axis=0), np.concatenate(preds, axis=0)
print(trues.shape, preds.shape)
mae, rmse, mape, smape, corr = metrics(preds, trues, args.mae_thresh, args.mape_thresh)
tra_val_metric = record_metric(tra_val_metric, [val_loss, mae, rmse, mape*100, smape*100, corr], ['val loss', 'mae', 'rmse', 'mape(%)', 'smape(%)', 'corr'])
# stopFlg = self.earlyStop( epoch, mae, mape)
stopFlg = self.earlyStop( epoch, mape, mape)
return tra_val_metric, stopFlg
def test(self, tstloader, ):
self.model.load_state_dict(torch.load(args.mdir+args.name+'.pkl'), False)
trues = []
preds = []
# trues_torch = []
# preds_torch = []
ids = np.random.permutation(list(range(args.lag, 921)))
num = len(ids)
spa_edge_weights = []
spa_feat_weights = []
temp_edge_weights = []
temp_feat_weights = []
with torch.no_grad():
self.model.eval()
for idx, batch in enumerate(tstloader):
batch = self.decorate_batch(batch)
X, Y, TE = batch
if args.model == 'STGIB':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X)
spa_edge_w = self.model.reg_info['spa_alpha'][0].unsqueeze(0)
print(spa_edge_w.shape)
spa_edge_weights.append(spa_edge_w.cpu().detach().numpy())
temp_edge_w = self.model.reg_info['temp_alpha'][0].unsqueeze(0)
temp_edge_weights.append(temp_edge_w.cpu().detach().numpy())
elif args.model == 'STGSAT':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
# save_file = np.load('./XAI_save/run_save.npz')
# spa_edge_w = save_file['spa_edge_weights']
# selected_nodes_spat = calculate_selected_nodes(self.model.edge_idx_spa, spa_edge_w, 90)
# maskout_nodes_list_spat = [node for node in range(args.num_nodes) if node not in selected_nodes_spat]
output = self.model(X, epoch=0)
# print(self.model.reg_info['spa_edge_weight'][0].cpu().detach().numpy().shape)
# spa_edge_weights.append(self.model.reg_info['spa_edge_weight'][0].cpu().detach().numpy())
# spa_feat_weights.append(self.model.reg_info['spa_feat_weight'][0].cpu().detach().numpy())
# temp_edge_weights.append(self.model.reg_info['temp_edge_weight'][0].cpu().detach().numpy())
# temp_feat_weights.append(self.model.reg_info['temp_feat_weight'][0].cpu().detach().numpy())
elif args.model == 'STGAT':
t_emb = TE[:, :args.lag, :] # B, T, 2
t_emb = torch.unsqueeze(t_emb, dim=2).repeat(1, 1, args.num_nodes, 1)
X = torch.cat([X, t_emb], dim = -1)
output = self.model(X, epoch=0)
output = self.scaler.inverse_transform(output)
Y = self.scaler.inverse_transform(Y)
trues.append(Y.detach().cpu().numpy())
preds.append(output.detach().cpu().numpy())
# trues_torch.append(Y)
# preds_torch.append(output)
# val_loss = np.mean(val_loss)
trues, preds = np.concatenate(trues, axis=0), np.concatenate(preds, axis=0)
# if args.model == 'STGSAT':
# spa_edge_weights = np.concatenate(spa_edge_weights, axis=0)
# spa_feat_weights = np.concatenate(spa_feat_weights, axis=0)
# temp_edge_weights = np.concatenate(temp_edge_weights, axis=0)
# temp_feat_weights = np.concatenate(temp_feat_weights, axis=0)
# elif args.model == 'STGIB':
# spa_edge_weights = np.concatenate(spa_edge_weights, axis=0).mean(0)
# temp_edge_weights = np.concatenate(temp_edge_weights, axis=0).mean(0)
# print(spa_edge_weights)
# print(temp_edge_weights)
# np.savez('./XAI_save/run_save_gib.npz', trues=trues, preds=preds, spa_edge_weights=spa_edge_weights, temp_edge_weights=temp_edge_weights)
for t in range(trues.shape[1]):
mae, rmse, mape, smape, corr = metrics(preds[:, t, ...], trues[:, t, ...], args.mae_thresh, args.mape_thresh)
log = "Horizon {:02d}, MAE: {:.4f}, RMSE: {:.4f}, MAPE: {:.4f}%, sMAPE: {:.4f}%, Corr: {:.4f}".format(
t + 1, mae, rmse, mape * 100, smape * 100, corr)
logger.info(log)
mae, rmse, mape, smape, corr = metrics(preds, trues, args.mae_thresh, args.mape_thresh)
logger.info("Average Horizon, Best Epoch: {}, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%, sMAPE: {:.4f}%, Corr: {:.4f}".format(
self.best_epoch, mae, rmse, mape * 100, smape * 100, corr))
# preds_tch, trues_ch = torch.cat(preds_torch, dim = 0), torch.cat(trues_torch, dim = 0)
# mae, mape, rmse= metric_new(preds_tch, trues_ch)
# logger.info("Average Horizon, New Metrics: {}, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%".format(
# self.best_epoch, mae, rmse, mape))
def get_optim(self, ):
optimizer = torch.optim.Adam(self.model.parameters(), lr=args.lr, weight_decay = args.weight_decay, betas=(0.9, 0.999))
steps = args.steps
lr_decay_ratio = args.lr_decay_ratio
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=steps,
gamma=lr_decay_ratio)
return optimizer, lr_scheduler
def get_criterion(self, ):
if args.criterion == 'MSE':
return nn.MSELoss()
elif args.criterion == 'Smooth':
return nn.SmoothL1Loss()
elif args.criterion == 'MAE':
return MAE_torch
def earlyStop(self, epoch, current_loss, mape_loss):
if epoch >= 100:
if current_loss >= self.last_loss or epoch == args.max_epoch:
# if epoch >= 0:
# if epoch == 1:
if current_loss < self.last_loss:
self.trigger = 0
self.last_loss = current_loss
self.last_mape_loss = mape_loss
self.best_epoch = epoch
self.best_state = copy.deepcopy(self.model.state_dict())
else:
self.trigger += 1
if self.trigger >= self.patience or epoch == args.max_epoch:
print('Early Stopping! The best epoch is ' + str(self.best_epoch))
if not os.path.exists(args.mdir):
os.makedirs(args.mdir)
torch.save(self.best_state,args.mdir+args.name+'.pkl')
return True
else:
self.trigger = 0
self.last_loss = current_loss
self.last_mape_loss = mape_loss
self.best_epoch = epoch
self.best_state = copy.deepcopy(self.model.state_dict())
return False