-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
82 lines (60 loc) · 3.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from train import train
from test import inference
import os, torch, warnings, argparse, random
from utils.utils import set_random_seed
import numpy as np
warnings.filterwarnings("ignore")
def get_params():
parser = argparse.ArgumentParser()
parser.add_argument('--n_classes', type=int, default=2,
help='number of classes')
parser.add_argument('--orth_ratio', type=float, default=1,
help='ratio of orthogonal loss')
parser.add_argument('--n_ddp', type=int, default=0,
help='number of data-driven concept')
parser.add_argument('--num_patch_prompt', type=int, default=26,
help='number of patch prompt')
parser.add_argument('--seed', type=int, default=2023,
help='random seed')
parser.add_argument('--n_ctx', type=int, default=16,
help='number of learnable prompt')
parser.add_argument('--experiment_rp', type=str, default="/home/r10user13/TOP/experiment",
help='root path of experiment')
parser.add_argument('--experiment_name', type=str, default="lung_subtyping",
help='name of experiment')
parser.add_argument('--task_type', type=str, default="train",
help='type of task (train/test)')
parser.add_argument('--learning_rate', type=float, default=0.0001,
help='learning rate')
parser.add_argument("--is_shared", default=False, action='store_true')
parser.add_argument('--num_epochs', type=int, default=50,
help='number of epochs')
parser.add_argument("--adapted_ratio", type=float, default=0,
help="ratio of adapter")
parser.add_argument('--vlm_name', type=str, default="quilt1m", choices=["clip", "plip", "quilt1m"],
help='name of VLM')
parser.add_argument('--feature_rp', type=str, default='/data1/r10user13/TOP/lung_quilt1m_20x_448/',
help='path of feature files')
parser.add_argument('--fold_name', type=str, default="fold3",
help='fold name')
parser.add_argument('--model_fp', type=str, default='',
help='path of trained model')
parser.add_argument('--early_stop', default=False, action='store_true',
help='use early stop or not')
args, _ = parser.parse_known_args()
return args
if __name__ == '__main__':
try:
args = get_params()
set_random_seed(args.seed)
print("========================================Parameters========================================")
for arg in vars(args):
print(f'{arg}: {getattr(args, arg)}')
print("==========================================================================================")
# setup_seed(args.seed)
if args.task_type == "train":
train(args)
elif args.task_type == "test":
inference(args)
except Exception as exception:
raise