-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathUPDATE_qc_formatted.R
238 lines (208 loc) · 7.19 KB
/
UPDATE_qc_formatted.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# THIS CODE CAN BE DELETED ON 7/1/2021 -- USED TO CHECK RE-FACTOR FOR TRANSITION TO TABLEAU
# QC tables ------------------------------------------------------------------
# No messages = No issues!
rm(list = ls())
QC <- function(name, qc_df) {
if(nrow(qc_df) > 0) {
cat("CHECK ", name)
print(qc_df)
}
}
# Define appKey and years ----------------------------------------------------
#appKey = "hc_ins"; years = 1996:2018;
#appKey = "hc_pmed"; years = 1996:2018;
#appKey = "hc_use"; years = c(1996, 2000, 2002, 2005, 2015:2018);
#appKey = "hc_cond_icd9"; years = 1996:2015;
#appKey = "hc_cond_icd10"; years = 2016:2018;
#appKey = "hc_care_access"; years = 2002:2018; ## !! 2018 is tricky...
#appKey = "hc_care_diab"; years = 2002:2018;
#appKey = "hc_care_qual"; years = 2002:2017;
# year = 2014
# year = 2018
chk_year = 2018
app_years <- list(
"hc_use" = chk_year,
"hc_ins" = chk_year,
"hc_pmed" = chk_year,
"hc_care_access" = chk_year,
"hc_care_diab" = chk_year,
"hc_care_qual" = 2017,
# "hc_cond_icd9" = 1996:2015,
"hc_cond_icd10" = chk_year)
# Loop through years ---------------------------------------------------------
for(appKey in names(app_years)) { print(appKey)
years = app_years[[appKey]]
for(year in years) { print(year)
options(dplyr.width = Inf)
new <- read.csv(str_glue("formatted_tables/{appKey}/DY{year}.csv"))
orig <- read.csv(str_glue("formatted_tables - Copy/{appKey}/DY{year}.csv"))
new_tbl <- new %>% as_tibble
orig_tbl <- orig %>% as_tibble
if(appKey == "hc_care_qual") {
orig_tbl <- orig_tbl %>%
mutate(
adult_child = replace(adult_child, adult_child == "child", "Children"),
adult_child = replace(adult_child, adult_child == "adult", "Adults"))
}
all_equal(orig_tbl, new_tbl) %>% print
}
}
# OLD CODE FOR PREVIOUS VERSION ----------------------------------------------
# # hc_care -- load subset
# if(appKey %>% startsWith("hc_care")) {
# orig_care <- read.csv(str_glue("formatted_tables - orig/hc_care/DY{year}.csv"))
#
# if(appKey == "hc_care_access") {
# orig <- orig_care %>% filter(grepl("Access", col_group))
# new <- new %>%
# mutate(col_label = gsub( " (2002-2017)","", col_label, fixed = T))
# }
#
# if(appKey == "hc_care_diab") orig <- orig_care %>% filter(grepl("Diabetes", col_group))
# if(appKey == "hc_care_qual") orig <- orig_care %>% filter(grepl("Quality", col_group))
#
# } else {
# orig <- read.csv(str_glue("formatted_tables - orig/{appKey}/DY{year}.csv"))
# }
# Edits
# orig <- orig %>% rename(value = coef)
# # if("row_group" %in% colnames(orig_tbl)) {
# orig_tbl <- orig_tbl %>%
# mutate(row_group = replace(row_group, row_group == "", "(none)"))
# }
# if("col_group" %in% colnames(orig_tbl)) {
# orig_tbl <- orig_tbl %>%
# mutate(col_group = replace(col_group, col_group == "", "(none)"))
# }
#
# if(appKey == "hc_use") {
# new_tbl <- new_tbl %>% filter(!(col_var == row_var & row_var != "ind"))
# }
#
# if(appKey == "hc_care_qual") {
# orig_tbl <- orig_tbl %>%
# separate(col_var, into = c("adult_child", "col_var")) %>%
# separate(col_group, into = c("col_group", "drop"), sep = ":") %>%
# select(-drop)
# }
#
# if(appKey %>% startsWith("hc_care")) {
# orig_tbl <- orig_tbl %>%
# mutate(caption = gsub(" by", ", by", caption))
# }
# # Compare caption only
# cap_vars <- c("adult_child", "stat_var", "row_var", "col_var", "caption")
# captions <- full_join(
# orig_tbl %>% select(one_of(cap_vars)) %>% rename(orig_caption = caption) %>% distinct,
# new_tbl %>% select(one_of(cap_vars)) %>% rename(new_caption = caption) %>% distinct)
#
# QC("caption_diff",captions %>%
# filter(orig_caption != new_caption))
#
# QC("caption_missing", captions %>%
# filter(is.na(orig_caption) | is.na(new_caption)))
#
#
# # # Edits based on apps
# # if(appKey == "hc_pmed") {
# # orig_tbl <- orig_tbl %>%
# # mutate(col_label = "(none)", rowLevels = ifelse(row_var == "RXDRGNAM", toupper(rowLevels), rowLevels))
# # #new_tbl <- new_tbl %>% filter(value != "--")
# # }
#
#
# # Combine and compare
# combined <- full_join(
# orig_tbl %>% rename(value_orig = value, se_orig = se) %>% mutate(in_orig = TRUE),
# new_tbl %>% rename(value_new = value, se_new = se) %>% mutate(in_new = TRUE))
#
# # Check number of rows
# nc <- nrow(combined)
# norig <- nrow(orig_tbl)
# nnew <- nrow(new_tbl)
#
# if(nc != nnew) {
# print("WARNING: DIFFERENT NUMBER OF ROWS")
# }
#
# if(FALSE) {
# # should have 0 rows
# QC("QC1", combined %>%
# filter(is.na(in_orig) | is.na(in_new)) %>%
# count(col_var, row_var, in_orig, in_new))
#
# QC("QC2", combined %>%
# filter(is.na(in_orig) | is.na(in_new)) %>%
# count(stat_var, stat_label, in_orig, in_new))
#
#
# }
#
#
# QC("QC1.5", combined %>%
# filter(is.na(in_orig) | is.na(in_new), value_new != "--")
# )
#
# #
# # combined2 <- combined %>%
# # mutate(
# # value_new = suppressWarnings(as.numeric(value_new)),
# # se_new = suppressWarnings(as.numeric(se_new)),
# #
# # value_new = ifelse(Percent, value_new*100, value_new),
# # se_new = ifelse(Percent, se_new*100, se_new),
# #
# # asterisk_orig = grepl("*", value_orig, fixed = T),
# #
# # orig_num = value_orig %>%
# # gsub(",", "", .) %>%
# # gsub("*","", ., fixed = T) %>%
# # as.numeric,
# #
# # se_num = se_orig %>%
# # gsub(",", "", .) %>%
# # gsub("*", "", ., fixed = T) %>%
# # as.numeric(),
# #
# # n_digits = nchar(word(orig_num, 2, sep = "\\.")),
# # se_digits = nchar(word(se_num, 2, sep = "\\."))) %>%
# #
# # replace_na(list(n_digits = 0, se_digits = 0))
# #
# # combined3 <- combined2 %>%
# # select(-ends_with("label"), -ends_with("group"), -caption) %>%
# # mutate(
# # value_rnd = round(value_new, n_digits),
# # se_rnd = round(se_new, se_digits)
# # )
#
#
# # These are bad:
# QC("QC3", combined3 %>% filter(value_rnd != orig_num))
# QC("QC4", combined3 %>% filter(se_rnd != se_num))
#
# QC("QC5", combined3 %>% filter(is.na(in_new)))
# QC("QC6", combined3 %>% filter(is.na(in_orig) & !is.na(value_new)))
#
#
# # These are also bad:
# QC("QC7", combined3 %>% filter(is.na(value_rnd) & !is.na(orig_num), sample_size >= 60))
# QC("QC8", combined3 %>% filter(!is.na(value_rnd) & is.na(orig_num), sample_size >= 60))
#
# QC("QC9", combined3 %>% filter(is.na(se_rnd) & !is.na(se_num), sample_size >= 60))
# QC("QC10", combined3 %>% filter(!is.na(se_rnd) & is.na(se_num), sample_size >= 60))
#
# QC("QC11", combined3 %>% filter(asterisk == "*" & !asterisk_orig, sample_size >= 60))
# QC("QC12", combined3 %>% filter(asterisk == "" & asterisk_orig, sample_size >= 60))
#
# QC("QC13", combined3 %>% filter(is.na(value_rnd) & !is.na(se_rnd), sample_size >= 60))
# QC("QC14", combined3 %>% filter(!is.na(value_rnd) & is.na(se_rnd), sample_size >= 60))
#
# } # end for year in years
#
#
# # # These are OK:
# # combined3 %>% filter(is.na(value_rnd) & is.na(orig_num))
# # combined3 %>% filter(asterisk == "*")
#
# # View(combined3)